• 第二章:Pythonocc官方demo 案例44(几何板条)


    源代码:

    ##Copyright 2009-2016 Jelle Feringa (jelleferinga@gmail.com)
    ##
    ##This file is part of pythonOCC.
    ##
    ##pythonOCC is free software: you can redistribute it and/or modify
    ##it under the terms of the GNU Lesser General Public License as published by
    ##the Free Software Foundation, either version 3 of the License, or
    ##(at your option) any later version.
    ##
    ##pythonOCC is distributed in the hope that it will be useful,
    ##but WITHOUT ANY WARRANTY; without even the implied warranty of
    ##MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    ##GNU Lesser General Public License for more details.
    ##
    ##You should have received a copy of the GNU Lesser General Public License
    ##along with pythonOCC.  If not, see .
    from __future__ import print_function
    
    import os
    import sys
    import time
    
    from OCC.Core.BRep import BRep_Tool
    from OCC.Core.BRepAdaptor import BRepAdaptor_HCurve
    from OCC.Core.BRepBuilderAPI import BRepBuilderAPI_MakePolygon
    from OCC.Core.BRepFill import BRepFill_CurveConstraint
    from OCC.Display.SimpleGui import init_display
    from OCC.Core.GeomAbs import GeomAbs_C0
    from OCC.Core.GeomLProp import GeomLProp_SLProps
    from OCC.Core.GeomPlate import (GeomPlate_BuildPlateSurface, GeomPlate_PointConstraint,
    	                            GeomPlate_MakeApprox)
    from OCC.Core.ShapeAnalysis import ShapeAnalysis_Surface
    from OCC.Core.gp import gp_Pnt
    from OCC.Core.BRepFill import BRepFill_Filling
    
    from OCC.Extend.TopologyUtils import TopologyExplorer, WireExplorer
    from OCC.Extend.ShapeFactory import make_face, make_vertex
    from OCC.Extend.DataExchange import read_iges_file
    
    display, start_display, add_menu, add_function_to_menu = init_display()
    
    try:
        HAS_SCIPY = True
        from scipy.optimize import fsolve
    except ImportError:
        print('scipy not installed, will not be able to run the geomplate example')
        HAS_SCIPY = False
    
    # TODO:
    # - need examples where the tangency to constraining faces is respected
    
    
    def make_n_sided(edges, points, continuity=GeomAbs_C0):
        """
        builds an n-sided patch, respecting the constraints defined by *edges*
        and *points*
    
        a simplified call to the BRepFill_Filling class
        its simplified in the sense that to all constraining edges and points
        the same level of *continuity* will be applied
    
        *continuity* represents:
    
        GeomAbs_C0 : the surface has to pass by 3D representation of the edge
        GeomAbs_G1 : the surface has to pass by 3D representation of the edge
        and to respect tangency with the given face
        GeomAbs_G2 : the surface has to pass by 3D representation of the edge
        and to respect tangency and curvature with the given face.
    
        NOTE: it is not required to set constraining points.
        just leave the tuple or list empty
    
        :param edges: the constraining edges
        :param points: the constraining points
        :param continuity: GeomAbs_0, 1, 2
        :return: TopoDS_Face
        """
        n_sided = BRepFill_Filling()
        for edg in edges:
            n_sided.Add(edg, continuity)
        for pt in points:
            n_sided.Add(pt)
        n_sided.Build()
        face = n_sided.Face()
        return face
    
    
    def make_closed_polygon(*args):
        poly = BRepBuilderAPI_MakePolygon()
        for pt in args:
            if isinstance(pt, list) or isinstance(pt, tuple):
                for i in pt:
                    poly.Add(i)
            else:
                poly.Add(pt)
        poly.Build()
        poly.Close()
        result = poly.Wire()
        return result
    
    
    
    def geom_plate(event=None):
        display.EraseAll()
        p1 = gp_Pnt(0, 0, 0)
        p2 = gp_Pnt(0, 10, 0)
        p3 = gp_Pnt(0, 10, 10)
        p4 = gp_Pnt(0, 0, 10)
        p5 = gp_Pnt(5, 5, 5)
        poly = make_closed_polygon([p1, p2, p3, p4])
        edges = [i for i in TopologyExplorer(poly).edges()]
        face = make_n_sided(edges, [p5])
        display.DisplayShape(edges)
        display.DisplayShape(make_vertex(p5))
        display.DisplayShape(face, update=True)
    
    
    # ============================================================================
    # Find a surface such that the radius at the vertex is n
    # ============================================================================
    
    
    def build_plate(polygon, points):
        '''
        build a surface from a constraining polygon(s) and point(s)
        @param polygon:     list of polygons ( TopoDS_Shape)
        @param points:      list of points ( gp_Pnt )
        '''
        # plate surface
        bpSrf = GeomPlate_BuildPlateSurface(3, 15, 2)
    
        # add curve constraints
        for poly in polygon:
            for edg in WireExplorer(poly).ordered_edges():
                c = BRepAdaptor_HCurve()
                c.ChangeCurve().Initialize(edg)
                constraint = BRepFill_CurveConstraint(c, 0)
                bpSrf.Add(constraint)
    
        # add point constraint
        for pt in points:
            bpSrf.Add(GeomPlate_PointConstraint(pt, 0))
            bpSrf.Perform()
    
        maxSeg, maxDeg, critOrder = 9, 8, 0
        tol = 1e-4
        dmax = max([tol, 10 * bpSrf.G0Error()])
    
        srf = bpSrf.Surface()
        plate = GeomPlate_MakeApprox(srf, tol, maxSeg, maxDeg, dmax, critOrder)
        uMin, uMax, vMin, vMax = srf.Bounds()
    
        return make_face(plate.Surface(), uMin, uMax, vMin, vMax, 1e-4)
    
    
    def radius_at_uv(face, u, v):
        '''
        returns the mean radius at a u,v coordinate
        @param face:    surface input
        @param u,v:     u,v coordinate
        '''
        h_srf = BRep_Tool().Surface(face)
        #uv_domain = GeomLProp_SurfaceTool().Bounds(h_srf)
        curvature = GeomLProp_SLProps(h_srf, u, v, 1, 1e-6)
        try:
            _crv_min = 1. / curvature.MinCurvature()
        except ZeroDivisionError:
            _crv_min = 0.
    
        try:
            _crv_max = 1. / curvature.MaxCurvature()
        except ZeroDivisionError:
            _crv_max = 0.
        return abs((_crv_min + _crv_max) / 2.)
    
    
    def uv_from_projected_point_on_face(face, pt):
        '''
        returns the uv coordinate from a projected point on a face
        '''
        srf = BRep_Tool().Surface(face)
        sas = ShapeAnalysis_Surface(srf)
        uv = sas.ValueOfUV(pt, 1e-2)
        print('distance ', sas.Value(uv).Distance(pt))
        return uv.Coord()
    
    
    class RadiusConstrainedSurface():
        '''
        returns a surface that has `radius` at `pt`
        '''
    
        def __init__(self, display, poly, pnt, targetRadius):
            self.display = display
            self.targetRadius = targetRadius
            self.poly = poly
            self.pnt = pnt
            self.plate = self.build_surface()
    
        def build_surface(self):
            '''
            builds and renders the plate
            '''
            self.plate = build_plate([self.poly], [self.pnt])
            self.display.EraseAll()
            self.display.DisplayShape(self.plate)
            vert = make_vertex(self.pnt)
            self.display.DisplayShape(vert, update=True)
    
        def radius(self, z):
            '''
            sets the height of the point constraining the plate, returns
            the radius at this point
            '''
            if isinstance(z, float):
                self.pnt.SetX(z)
            else:
                self.pnt.SetX(float(z[0]))
            self.build_surface()
            uv = uv_from_projected_point_on_face(self.plate, self.pnt)
            radius = radius_at_uv(self.plate, uv[0], uv[1])
            print('z: ', z, 'radius: ', radius)
            self.curr_radius = radius
            return self.targetRadius - abs(radius)
    
        def solve(self):
            fsolve(self.radius, 1, maxfev=1000)
            return self.plate
    
    
    def solve_radius(event=None):
        if not HAS_SCIPY:
            print("sorry cannot run solve_radius, scipy was not found...")
            return
        display.EraseAll()
        p1 = gp_Pnt(0, 0, 0)
        p2 = gp_Pnt(0, 10, 0)
        p3 = gp_Pnt(0, 10, 10)
        p4 = gp_Pnt(0, 0, 10)
        p5 = gp_Pnt(5, 5, 5)
        poly = make_closed_polygon([p1, p2, p3, p4])
        for i in (0.1, 0.5, 1.5, 2., 3., 0.2):
            rcs = RadiusConstrainedSurface(display, poly, p5, i)
            rcs.solve()
            print('Goal: %s radius: %s' % (i, rcs.curr_radius))
            time.sleep(0.1)
    
    
    def build_geom_plate(edges):
        bpSrf = GeomPlate_BuildPlateSurface(3, 9, 12)
    
        # add curve constraints
        for edg in edges:
            c = BRepAdaptor_HCurve()
            print('edge:', edg)
            c.ChangeCurve().Initialize(edg)
            constraint = BRepFill_CurveConstraint(c, 0)
            bpSrf.Add(constraint)
    
        # add point constraint
        try:
            bpSrf.Perform()
        except RuntimeError:
            print('failed to build the geom plate surface ')
    
        srf = bpSrf.Surface()
        plate = GeomPlate_MakeApprox(srf, 0.01, 10, 5, 0.01, 0, GeomAbs_C0)
    
        uMin, uMax, vMin, vMax = srf.Bounds()
        face = make_face(plate.Surface(), uMin, uMax, vMin, vMax, 1e-6)
        return face
    
    
    def build_curve_network(event=None):
        '''
        mimic the curve network surfacing command from rhino
        '''
        print('Importing IGES file...')
        iges_file = os.path.join('..', 'assets', 'models', 'curve_geom_plate.igs')
        iges = read_iges_file(iges_file)
    
        print('Building geomplate...')
        topo = TopologyExplorer(iges)
        edges_list = list(topo.edges())
        face = build_geom_plate(edges_list)
        print('done.')
        display.EraseAll()
        display.DisplayShape(edges_list)
        display.DisplayShape(face)
        display.FitAll()
        print('Cutting out of edges...')
    
    
    def exit(event=None):
        sys.exit()
    
    
    if __name__ == "__main__":
        add_menu('geom plate')
        add_function_to_menu('geom plate', geom_plate)
        add_function_to_menu('geom plate', solve_radius)
        add_function_to_menu('geom plate', build_curve_network)
        add_function_to_menu('geom plate', exit)
    
        build_curve_network()
        start_display()
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307

    运行效果:生成几何板条
    在这里插入图片描述

  • 相关阅读:
    两个类文件,实现根据返回的id显示对应的人员信息增强返回
    ClickHouse查询语句详解
    项目(day02网站流量指标统计)
    docker 安装 RabbitMq
    基于STM32F103ZET6库函数独立看门狗(IWDG)实验
    《Spring Security 简易速速上手小册》第4章 授权与角色管理(2024 最新版)
    链接服务器导致SQL Server停止响应
    C++变量声明和变量定义
    【Eclipse】Project interpreter not specified 新建项目时,错误提示,已解决
    最长连续序列(C++解法)
  • 原文地址:https://blog.csdn.net/loujiand/article/details/128030560