测量平差程序设计
#define PI 3.14159265
double AngleToRadian(double angle)
{
int D,M;
double S,radian,degree, angle,MS;
D=int(angle+0.3);
MS=angle-D;
M=int((MS)*100+0.3);
S=(MS*100-M)*100;
degree=D+M/60.0+S/3600.0;
radian=degree*PI/180.0;
return radian;
}
注意:防止数据溢出,要加个微小量,例如0.3.
#define PI 3.14159265
double RadianToAngle(double radian)
{
int D,M;
double S,radian,degree,MS,angle;
degree=radian*180/PI;
D=int(degree);
MS=degree-D;
M=int(MS*60);
S=(MS*60-M)*60;
angle=D+M/100.0+S/10000.0;
return angle;
}
#include
double Azimuth(double xi,double yi,double xj,double yj)
{
double Dx,Dy,S,T;
Dx=xj-xi;
Dy=yj-yi;
S=sqrt(Dx*Dx+Dy*Dy);
if(S<1e-10) return 0;
T=asin(Dy/S);
if(Dx<0) T=PI-T;
if(Dx>0&&(Dy<0)||T<0) T=2*PI+T;
return T;
}
4.开辟二维数组的动态空间的宏
#include
#define NewArray2D(type,A,i,n,m){A=(type**)malloc(n*sizeof(type*));\
for(i=0;i A[i]=(type*)malloc(m*sizeof(type));\ } 5.释放开辟的二维数组的空间 #define FreeSpace(A,i,m){for(i=0;i free(A[ i]);\ free(A);\ } 注意:释放空间与开辟空间相反,释放空间是先释放列,后释放行. 6.矩阵求转置transformmatrix void transformmatrix(double **A,double **B,int i,int j) { int m,n; for(m=0;m<=i;m++) for(n=0;n<=j;n++) { B[n][m]=A[m][n]: } } 7.矩阵相乘(mulmatrix) void mulmatrix(double **A,double **B,double **C,int i,int j,int k) { int m,n,p; for(m=0;m
for(n=0;n { C[m][n]=0; for(p=0;p { C[m][n]+=A[m][p]*B[p][n]: } } } 8.矩阵求逆(countermatrix) #include void countermatrix(double **T, double **s, double **r, double **Q,double **N, double **rt,int n) { for(i=0;i { s=N[i][i]; for(k=0;k
{ s-=T[k][i]*T[k][i]; } T[i][i]=sqrt(s) for(j=i+1;j { s=N[i][j]; for(k=0;k
{ s-=T[k][i]*T[k][j]; } T[i][j]=s/T[i][i]; } } for(i=0;i for(j=0;j { T[i][j]=0; } for(i=n-1;i>=0;i++) { r[i][i]=1/T[i][i]; for(j=i+1;j { s=0; for(k=i;k { s-=r[i][k]*T[k][j]; } r[i][j]=s/T[i][i]; } } for(i=0;i for(j=0;j { r[i][j]=0; } transformmatrix(r,rt,n,n) mulmatrix(r,rt,Q,n,n) } 9.平差主程序之读入数据 typedef struct POINT { char name[8]; double x,y; int type; }POINT; typedef struct READVALUE { POINT *begin; POINT *end; double value; }READVALUE; POINT *GETPOINT(char *name,POINT *pPoint,int nPoint) { int i; for(i=0;i { if (strcmp(pPoint[i].name,name)==0) return (pPoint+i) } for(i=0;i { if(pPoint[i]=NULL) strcmp(pPoint[i].name,name); pPoint[i].type=0; return(pPoint+i); } } double AngleToRadian(double angle) { int D,M; double S,radian,degree, angle,MS; D=int(angle+0.3); MS=angle-D; M=int((MS)*100+0.3); S=(MS*100-M)*100; degree=D+M/60.0+S/3600.0; radian=degree*PI/180.0; return radian; } main() { POINT *pPoint=NULL; READVALUE *pDirect=NULL; READVALUE *pDistance=NULL; int nPoint,nKnownPoint,nDirect,nDistance,i; double mo,mf,ms; char begin[8],end[8]; FILE *fp=0; fp=fopen(“c:\\dat\\t1.txt”,”r”) fscanf(fp,”%d,%d,%d,%d\n”,&nPoint,&nKnowPoint,&nDirect,&nDistance) if(nPoint>0) pPoint=(POINT*)malloc(nDirect*sizeof(POINT)); if(nDirect>0) pDirect=(READVALUE*)malloc(nDirect*sizeof(READVALUE)); if(nDistance>0) pDistance=(READVALUE*)malloc(nDistance*sizeof(RAADVALUE)); fscanf(fp,”%lf,%lf,%lf\n”,&mo,&mf,&ms); for(i=0;i { fscanf(fp,”%s,%lf,%lf\n”,pPoint[i].name,&pPoint[i].x,&pPoint[i].y); type=1; } for( ;i { pPoint[i].name=NULL; pPoint[i].x=0; pPoint[i].y=0; pPoint[i].type=0; } for(i=0;i { fscanf(fp,”%s,%s,%lf\n”,begin,end,&pDirect[i].value); pDirect[i].begin=GetPoint(begin,pPoint,nPoint); pDirect[i].end=GetPoint(end,pPoint,nPoint); } for(i=0;i { fscanf(fp,”%s,%s,%lf\n”,begin,end,&pDistance[i].value); pDistance[i].begin=GetPoint(begin,pPoint,nPoint); pDistance[i].end=GetPoint(end,pPoint,nPoint); } fclose(fp); } 10.角度检验(checkangle) #include int checkangle(double angle) { int M,S; double MS; if(angle>=0&&angle<360) { MS=angle-(int)(angle); if(M<6) { S=(int)(MS*1000); if(S%10<6) { return 1; } } } return 0; } 11.前方交会 #define PI=3014159265 /***此处调用程序角度换弧度AngleToRadian***/ Qianfang(double XE, double YE, double XF, double YF, doubleDEG, double DEF, double DFG, double DFE, double *DFE, double *DFG) { double C,A,B; C=DGE-DGF; A=DEF-DEG; B=DFG-DFE; if((C<-PI&&C>-2*PI)||(C>0&&C { XG=(XE/tan(B)+XF/tan(A)-YE+YF)/(1/tan(A)+ 1/tan(B); YG=(YE/tan(B)+YF/tan(A)+XE-XF)/ (1/tan(A)+ 1/tan(B); } if((C>-PI&&C<0)||(C>PI&&C<2*PI)) { XG=(XE/tan(B)+XF/tan(A)+YE-YF)/(1/tan(A)+ 1/tan(B); YG=(YE/tan(B)+YF/tan(A)-XE+XF)/ (1/tan(A)+ 1/tan(B); } } 12.坐标概算全方向法 子函数取出观测方向GetAllDirect int GetAllDirect(char *name,int nDirect,READVALUE *pDirect, READVALUE *pStation) { int i,nCount=0; for(i=0;i if(strcmp(pDirect[i].begin->name,name)==0)) { pStation[nCount].begin=p(pDirect[nCount].begin; pStation[nCount].end=p(pDirect[nCount].end; pStation[nCount].value=p(pDirect[nCount].value; nCount++; } return nCount; } 坐标概算全方向法子程序实现流程(coordinate) coordinate (入口参数设置) { READVALUE pStation[50],pObject[50]; int nCount,i,j,k,m,n,p,nobject; for(i=0;i { nCount=GetAllDirect(pPoint[i].name,nDirect,pStation) if((nCount>1)||( nCount=1)) { for(j=0;j { if(pStation[j].end->type==1) { for(k=0;k { if(pStation[k].end->type==0) nobject=GetAllDirect(pStation[j].end->name,nDirect,pDirect,pobject) m=-1; n=-1; for(p=0;p { if(strcmp(pobject[p].end->name,pPoint[i].name)==0) { m=p; } if(strcmp(pobject[p].end->name,pStation[k].end->name)==0) { n=p; } if(m>=0&&n>=0) { pPoint[i]=pStation[k].end-pStation[j].end; pStation[j].end=pObject[m].value-pObject[n].value; { Xe=pPoint[i].x; Ye=pPoint[i].y; Xf=pStation[j].end->x; Yf=pStation[j].end->y; Lef=pStation[j].value; Leg=pStation[k].value; Lfe=pObject[m].value; Lfg=pObject[n].value; Qianfang(Xe,Xf,Ye,Yf,Lef,Leg,Lfe,Lfg,*Xg,*Yg;) pStation[k].end->x=*xg; pStation[k].end->y=*yg; pStation[k].end.type=2; } } } } } } } } 13.坐标增量法(calcoordinate) 子函数由端点名称得边长值的函数GetDistance double GetDistance(char *begin,char *end,int nDistance,READVALUE *pDistance) { int i; for(i=0;i { if((strcmp(pDistance[i].begin->name,begin)==0&&strcmp(pDistance[i].end->name,end==0)||(strcmp(pDistance[i].begin->name,end)==0&&strcmp(pDistance[i].end,begin)==0)) return pDistance[i].value; } return -1; } /***函数取出观测方向GetAllDirect***/ void calcoordinate(int nDirect,READVALUE *pDirect,int nDistace,READVALUE *pDistance,int nPoint,POINT *pPoint) { int nPoint,nCount,nDirect,nDistance; int m=-1,i,j,k; double x1,y1,x2,y2,A0,A,S,dx,dy; READVALUE*pDirect=NULL; READVALUE pStation[50]; for(i=0;i { if(pPoint[i].type>0) { nCount=GetAllDirect(pPoint[i].name,nDirect,pDirect,pStation[50]); for(j=0;j { if(pStation[j].end->type>0)m=j; if(m!=-1) { for(k=0;k { if(pStation[k].end->type==0) { x1=pPoint[i].x; y1=pPoint[i].y; x2=pStation[j].end->x; y2=pStation[j].end->y; A0=Bearing(x1,y1,x2,y2); A=A0-(DMSToRAD(pStation[m].value)-DMSToRAD(pStation[k].value)); if(A<0)A=A+2*PI; if(A>2*PI)A=A-2*PI; S=GetDistance(pPoint[i],pStation[k].end,nDistance,pDistance); if(S<0)continue; else { dx=S*cos(A); dy=S*sin(A); pStation[k].end->x=pPoint[i].x+dx; pStation[k].end->y=pPoint[i].y+dy; pStation[k].end->type=2;} } } } } } } } 14.高斯正反算 高斯正算: #include #include #define PI 3.14159265 double DMSToRAD(double dDMS) { int L1,L2; double T,L3; L1=(int)(dDMS+0.3); L2=(int)((dDMS-L1)*100+0.3); L3=((dDMS-L1)*100-L2)*100; T=(L1+L2/60.0+L3/3600.0)*PI/180.0; return T; } void PreGausePositive(double B,double L,double L0, double a, double b, double *N, double *l, double *c, double *t, double *X,double *B1) { double a0,a2,a4,a6,a8,m0,m2,m4,m6,m8; double e,e1; e=(sqrt(a*a-b*b))/a; e1=(sqrt(a*a-b*b))/b; B1=DMSToRAD(B); t=tanB1; c=sqrt(e1*e1*cosB1*cos*B1); l=L-L0; N=a/(sqrt(1-e*e*sinB1*sinB1)); m0=a*(1-e*e); m2=3/2*e*e*m0; m4=5/4*e*e*m2; m6=7/6*e*e*m4; m8=9/8*e*e*m6; a0=m0+m2/2+3*m4/8+5*m6/16+35*m8/128; a2=m2/2+m4/2+15*m6/32+7/16*m8; a4=m4/8+3*m6/16+7*m8/32; a6=m6/32+m8/16; a8=m8/128; X=a0*B1-a2*(sin(2*B1))/2+a4*(sin(4*B1))/4-a6*(sin(6*B1))/6+a8*(sin(8*B1))/8; } Void BLToXY(double *x,double *y,double N,double l,double c,double t,double B1,double X) { x=X+N*l*l*t*cosB1*cosB1*((3+l*l*cosB1*cosB1*(5-t*t+9*c*c+4*c*c*c*c)/4+l*l*\ cosB1*cosB1*(61-58*t*t+t*t*t*t)/30))/6; y=N*l*cosB1(1+l*l*cosB1*((1+c*c-t*t)+l*l*cosB1*cosB1(5-18*t*t+t*t*t*t+14*c*c\ -58*t*t*c*c))); } 高斯反算 void XYToBL(double x,double y,double L0,double a,double b,double q,double *B,\ double *L) { double Bf,c,t,y,N,e1,e e=(sqrt(a*a-b*b))/(a*a); e1=(sqrt(a*a-b*b))/(b*b); for(Bf=0;;) { t=tanBf; c=e1*e1*cosBf; N=a/(sqrt(1-e*e*sinBf*sinBf)); B=Bf-(1+c*c)*t*y*y/(2*N*N)*(1-y*y)/(12*N*N)*(15+3*t*t+c*c-9*t*t*c*c)-y*y/(30*N*N)*(61+90*t*t+45*t*t*t*t); if(fabs(B-Bf) break; Bf=B; } L=L0+y/(N*cosBf)*(1-y*y/(6*N*N))*((1+2*t*t+c*c)-y*y/(20*N*N)*(5+6*c*c)+28*t*t+24*t*t*t*t+8*t*t*c*c)-y*y/(42*N*N)*(61+662*t*t+1320*t*t*t*t+720*t*t*t*t*t*t)); B=RADToDMS(B); L=RADToDMS(L); }