• 七、模型评估指标


    当训练好模型之后,检测模型训练效果如何,评价指标有哪些?通过查阅相关资料,我将以这五个指标来对所训练的模型进行评估,下图是评价指标运行结果图。

    在这里插入图片描述

    一、混淆矩阵(Confusion Matrix)

    解释:也就是个n维矩阵,n表示分类的类别数。
    具体的表示如下(这里以二分类任务为例):也就是图中的二维矩阵
    在这里插入图片描述在这里插入图片描述
    上述的所有指标都是建立在混淆矩阵的基础上进行计算的
    我这里以织物毛球和纹理进行识别,毛球为Positive,纹理为Negative
    这个二维矩阵有四个参数:

    参数解释
    True Positive模型预测识别为Positive,识别正确True;实际为Positive
    False Negative模型预测识别为Negative,识别错误False;实际为Positive
    False Positive模型预测识别为Positive,识别错误False;实际为Negative
    True Negative模型预测识别为Negative,识别正确True;实际为Negative

    这些值对测试图像中所有像素点进行分类统计

    图像数据

    待评估的图像,实则是将标签和模型预测的结果按像素点进行统计,最后根据评价指标进行给出结果,以下评估指标均使用这两张图像进行评估模型效果
    在这里插入图片描述
    其中img.jpg是通过labelme标记之后的结果,标签图像
    qqq.png为自己训练的网络模型预测的结果,模型预测图像

    代码实现:

    修改:SegmentationMetric(2)改成实际训练模型的分类数,我这个模型训练的是二分类任务
    imgPredictimgLabel 改成自己模型预测的图像和标签图像的路径
    实际上,imgLabel为正确答案,依次遍历imgPredict中像素点,与正确答案进行对比,统计上述参数的个数,最后绘制成混淆矩阵。

    import numpy as np
    import cv2
    
    class SegmentationMetric(object):
        def __init__(self, numClass):
            self.numClass = numClass
            self.confusionMatrix = np.zeros((self.numClass,) * 2)  # 混淆矩阵(空)
    
    
        def addBatch(self, imgPredict, imgLabel):
            assert imgPredict.shape == imgLabel.shape
            self.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)  # 得到混淆矩阵
            return self.confusionMatrix
    
    
        def genConfusionMatrix(self, imgPredict, imgLabel): 
            mask = (imgLabel >= 0) & (imgLabel < self.numClass)
            label = self.numClass * imgLabel[mask] + imgPredict[mask]
            count = np.bincount(label, minlength=self.numClass ** 2)
            confusionMatrix = count.reshape(self.numClass, self.numClass)
            return confusionMatrix
    
    
    # 测试内容
    if __name__ == '__main__':
        imgPredict = cv2.imread("../result/qqq.png")
        imgLabel  = cv2.imread("../result/img.jpg")
    
        imgPredict = np.array(cv2.cvtColor(imgPredict, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)
        imgLabel = np.array(cv2.cvtColor(imgLabel, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)
    
        metric = SegmentationMetric(2)  # 2表示有2个分类
        ConfusionMatrix = metric.addBatch(imgPredict, imgLabel)
    
        print('ConfusionMatrix is :\n', ConfusionMatrix)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35

    运行结果如下:在这里插入图片描述

    二、像素准确率PA(Pixel Accuracy)

    PA最后的输出是一个数值,因为是,无论多少类别的分类,都是跟标准标签进行对比,一致就是True,不一致就是False

    PA,别的论文也称为准确率、Acc等,都指的是像素准确率
    Accuracy = (TP + TN) / (TP + TN + FP + FN),也就是对角线元素之和/总的元素之和
    (99586+1150)/(99586+1108+556+1150)= 0.983750,这也对应了第一张图的显示结果

    代码实现:

    import numpy as np
    import cv2
    
    class SegmentationMetric(object):
        def __init__(self, numClass):
            self.numClass = numClass
            self.confusionMatrix = np.zeros((self.numClass,) * 2)  # 混淆矩阵(空)
    
    
        def addBatch(self, imgPredict, imgLabel):
            assert imgPredict.shape == imgLabel.shape
            self.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)  # 得到混淆矩阵
            return self.confusionMatrix
    
    
        def genConfusionMatrix(self, imgPredict, imgLabel):
            mask = (imgLabel >= 0) & (imgLabel < self.numClass)
            label = self.numClass * imgLabel[mask] + imgPredict[mask]
            count = np.bincount(label, minlength=self.numClass ** 2)
            confusionMatrix = count.reshape(self.numClass, self.numClass)
            return confusionMatrix
    
    
        def pixelAccuracy(self):
            acc = np.diag(self.confusionMatrix).sum() / self.confusionMatrix.sum()
            return acc
    
    # 测试内容
    if __name__ == '__main__':
        imgPredict = cv2.imread("../result/qqq.png")
        imgLabel = cv2.imread("../result/img.jpg")
    
        imgPredict = np.array(cv2.cvtColor(imgPredict, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)
        imgLabel = np.array(cv2.cvtColor(imgLabel, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)
    
        metric = SegmentationMetric(2)  # 2表示有2个分类
        ConfusionMatrix = metric.addBatch(imgPredict, imgLabel)
    
        PixelAccuracy = metric.pixelAccuracy()
    
        print('PixelAccuracy is :\n', PixelAccuracy)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42

    运行结果如下:
    在这里插入图片描述

    三、类别像素准确率CPA(Class Pixel Accuracy)

    CPA与PA不同,PA是将整体区分True和False最后结果是一个数值
    CPA则先将不同的类别进行划分,每个类别再分别与标签给定的正确答案进行对比统计,最后的个数是类别个数,有几个类别就是几个数值。

    代码实现:

    import numpy as np
    import cv2
    
    class SegmentationMetric(object):
        def __init__(self, numClass):
            self.numClass = numClass
            self.confusionMatrix = np.zeros((self.numClass,) * 2)  # 混淆矩阵(空)
    
    
        def addBatch(self, imgPredict, imgLabel):
            assert imgPredict.shape == imgLabel.shape
            self.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)  # 得到混淆矩阵
            return self.confusionMatrix
    
    
        def genConfusionMatrix(self, imgPredict, imgLabel):
            mask = (imgLabel >= 0) & (imgLabel < self.numClass)
            label = self.numClass * imgLabel[mask] + imgPredict[mask]
            count = np.bincount(label, minlength=self.numClass ** 2)
            confusionMatrix = count.reshape(self.numClass, self.numClass)
            return confusionMatrix
    
        def classPixelAccuracy(self):
            classAcc = np.diag(self.confusionMatrix) / self.confusionMatrix.sum(axis=1)
            return classAcc  # 返回的是一个列表值,如:[0.90, 0.80, 0.96],表示类别1 2 3各类别的预测准确率
    
    # 测试内容
    if __name__ == '__main__':
        imgPredict = cv2.imread("../result/qqq.png")
        imgLabel = cv2.imread("../result/img.jpg")
    
        imgPredict = np.array(cv2.cvtColor(imgPredict, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)
        imgLabel = np.array(cv2.cvtColor(imgLabel, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)
    
        metric = SegmentationMetric(2)  # 2表示有2个分类
        ConfusionMatrix = metric.addBatch(imgPredict, imgLabel)
    
        cpa = metric.classPixelAccuracy()
    
        print('classPixelAccuracy is :\n', cpa)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41

    因为是二分类任务,故分别显示这两个类别的PA值
    运行效果如下:
    在这里插入图片描述

    四、类别平均像素准确率MPA(Mean class Pixel Accuracy)

    也就是将所有的CPA加一块,求个平均值

    代码实现:

    import numpy as np
    import cv2
    
    class SegmentationMetric(object):
        def __init__(self, numClass):
            self.numClass = numClass
            self.confusionMatrix = np.zeros((self.numClass,) * 2)  # 混淆矩阵(空)
    
    
        def addBatch(self, imgPredict, imgLabel):
            assert imgPredict.shape == imgLabel.shape
            self.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)  # 得到混淆矩阵
            return self.confusionMatrix
    
    
        def genConfusionMatrix(self, imgPredict, imgLabel):
            mask = (imgLabel >= 0) & (imgLabel < self.numClass)
            label = self.numClass * imgLabel[mask] + imgPredict[mask]
            count = np.bincount(label, minlength=self.numClass ** 2)
            confusionMatrix = count.reshape(self.numClass, self.numClass)
            return confusionMatrix
    
        def classPixelAccuracy(self):
            classAcc = np.diag(self.confusionMatrix) / self.confusionMatrix.sum(axis=1)
            return classAcc  # 返回的是一个列表值,如:[0.90, 0.80, 0.96],表示类别1 2 3各类别的预测准确率
    
        def meanPixelAccuracy(self):
            classAcc = self.classPixelAccuracy()
            meanAcc = np.nanmean(classAcc)  # np.nanmean 求平均值,nan表示遇到Nan类型,其值取为0
            return meanAcc  # 返回单个值,如:np.nanmean([0.90, 0.80, 0.96, nan, nan]) = (0.90 + 0.80 + 0.96) / 3 =  0.89
    
    # 测试内容
    if __name__ == '__main__':
        imgPredict = cv2.imread("../result/qqq.png")
        imgLabel = cv2.imread("../result/img.jpg")
    
        imgPredict = np.array(cv2.cvtColor(imgPredict, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)
        imgLabel = np.array(cv2.cvtColor(imgLabel, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)
    
        metric = SegmentationMetric(2)  # 2表示有2个分类
        ConfusionMatrix = metric.addBatch(imgPredict, imgLabel)
    
        mpa = metric.meanPixelAccuracy()
    
        print('meanPixelAccuracy is :\n', mpa)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46

    (0.98899637+0.67409144)/ 2 = 0.831543905
    运行结果如下:
    在这里插入图片描述

    五、交并比IoU(Intersection Over Union)

    通俗来说:将标签图像和模型预测出的图像重叠一下,分别取交集和并集,这里的交集和并集取得是统计像素点的个数
    IoU是按不同类别分别进行求解的,几个类别就有几个IoU
    IoU = 交集 / 并集
    在这里插入图片描述

    代码实现:

    import numpy as np
    import cv2
    
    class SegmentationMetric(object):
        def __init__(self, numClass):
            self.numClass = numClass
            self.confusionMatrix = np.zeros((self.numClass,) * 2)  # 混淆矩阵(空)
    
    
        def addBatch(self, imgPredict, imgLabel):
            assert imgPredict.shape == imgLabel.shape
            self.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)  # 得到混淆矩阵
            return self.confusionMatrix
    
    
        def genConfusionMatrix(self, imgPredict, imgLabel):
            mask = (imgLabel >= 0) & (imgLabel < self.numClass)
            label = self.numClass * imgLabel[mask] + imgPredict[mask]
            count = np.bincount(label, minlength=self.numClass ** 2)
            confusionMatrix = count.reshape(self.numClass, self.numClass)
            return confusionMatrix
    
    
        def pixelAccuracy(self):
            acc = np.diag(self.confusionMatrix).sum() / self.confusionMatrix.sum()
            return acc
        
    
        def IntersectionOverUnion(self):
            # Intersection = TP Union = TP + FP + FN
            # IoU = TP / (TP + FP + FN)
            intersection = np.diag(self.confusionMatrix)  # 取对角元素的值,返回列表
            union = np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) - np.diag(
                self.confusionMatrix)  # axis = 1表示混淆矩阵行的值,返回列表; axis = 0表示取混淆矩阵列的值,返回列表
            IoU = intersection / union  # 返回列表,其值为各个类别的IoU
            return IoU
    # 测试内容
    if __name__ == '__main__':
        imgPredict = cv2.imread("../result/qqq.png")
        imgLabel = cv2.imread("../result/img.jpg")
    
        imgPredict = np.array(cv2.cvtColor(imgPredict, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)
        imgLabel = np.array(cv2.cvtColor(imgLabel, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)
    
        metric = SegmentationMetric(2)  # 2表示有2个分类
        ConfusionMatrix = metric.addBatch(imgPredict, imgLabel)
    
    
        IoU = metric.IntersectionOverUnion()
    
        print('IntersectionOverUnion is :\n', IoU)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52

    效果图如下:
    在这里插入图片描述

    六、平均交并比MIoU(Mean Intersection Over Union)

    将不同类别的IoU求个平均数

    代码实现:

    import numpy as np
    import cv2
    
    class SegmentationMetric(object):
        def __init__(self, numClass):
            self.numClass = numClass
            self.confusionMatrix = np.zeros((self.numClass,) * 2)  # 混淆矩阵(空)
    
    
        def addBatch(self, imgPredict, imgLabel):
            assert imgPredict.shape == imgLabel.shape
            self.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)  # 得到混淆矩阵
            return self.confusionMatrix
    
    
        def genConfusionMatrix(self, imgPredict, imgLabel):
            mask = (imgLabel >= 0) & (imgLabel < self.numClass)
            label = self.numClass * imgLabel[mask] + imgPredict[mask]
            count = np.bincount(label, minlength=self.numClass ** 2)
            confusionMatrix = count.reshape(self.numClass, self.numClass)
            return confusionMatrix
    
    
        def pixelAccuracy(self):
            acc = np.diag(self.confusionMatrix).sum() / self.confusionMatrix.sum()
            return acc
    
    
        def IntersectionOverUnion(self):
            # Intersection = TP Union = TP + FP + FN
            # IoU = TP / (TP + FP + FN)
            intersection = np.diag(self.confusionMatrix)  # 取对角元素的值,返回列表
            union = np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) - np.diag(
                self.confusionMatrix)  # axis = 1表示混淆矩阵行的值,返回列表; axis = 0表示取混淆矩阵列的值,返回列表
            IoU = intersection / union  # 返回列表,其值为各个类别的IoU
            return IoU
    
    
        def meanIntersectionOverUnion(self):
            mIoU = np.nanmean(self.IntersectionOverUnion())  # 求各类别IoU的平均
            return mIoU
    # 测试内容
    if __name__ == '__main__':
        imgPredict = cv2.imread("../result/qqq.png")
        imgLabel = cv2.imread("../result/img.jpg")
    
        imgPredict = np.array(cv2.cvtColor(imgPredict, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)
        imgLabel = np.array(cv2.cvtColor(imgLabel, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)
    
        metric = SegmentationMetric(2)  # 2表示有2个分类
        ConfusionMatrix = metric.addBatch(imgPredict, imgLabel)
    
        mIoU = metric.meanIntersectionOverUnion()
    
        print('meanIntersectionOverUnion is :\n', mIoU)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56

    运行结果如下:
    在这里插入图片描述

    七、完整代码

    import numpy as np
    import cv2
    
    __all__ = ['SegmentationMetric']
    
    """
    confusionMetric  # 注意:此处横着代表预测值,竖着代表真实值
    P\L     P    N
    P      TP    FP
    N      FN    TN
    """
    
    
    class SegmentationMetric(object):
        def __init__(self, numClass):
            self.numClass = numClass
            self.confusionMatrix = np.zeros((self.numClass,) * 2)  # 混淆矩阵(空)
    
        def pixelAccuracy(self):
            # return all class overall pixel accuracy 正确的像素占总像素的比例
            #  PA = acc = (TP + TN) / (TP + TN + FP + TN)
            acc = np.diag(self.confusionMatrix).sum() / self.confusionMatrix.sum()
            return acc
    
        def classPixelAccuracy(self):
            # return each category pixel accuracy(A more accurate way to call it precision)
            # acc = (TP) / TP + FP
            classAcc = np.diag(self.confusionMatrix) / self.confusionMatrix.sum(axis=1)
            return classAcc  # 返回的是一个列表值,如:[0.90, 0.80, 0.96],表示类别1 2 3各类别的预测准确率
    
        def meanPixelAccuracy(self):
            """
            Mean Pixel Accuracy(MPA,均像素精度):是PA的一种简单提升,计算每个类内被正确分类像素数的比例,之后求所有类的平均。
            :return:
            """
            classAcc = self.classPixelAccuracy()
            meanAcc = np.nanmean(classAcc)  # np.nanmean 求平均值,nan表示遇到Nan类型,其值取为0
            return meanAcc  # 返回单个值,如:np.nanmean([0.90, 0.80, 0.96, nan, nan]) = (0.90 + 0.80 + 0.96) / 3 =  0.89
    
        def IntersectionOverUnion(self):
            # Intersection = TP Union = TP + FP + FN
            # IoU = TP / (TP + FP + FN)
            intersection = np.diag(self.confusionMatrix)  # 取对角元素的值,返回列表
            union = np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) - np.diag(
                self.confusionMatrix)  # axis = 1表示混淆矩阵行的值,返回列表; axis = 0表示取混淆矩阵列的值,返回列表
            IoU = intersection / union  # 返回列表,其值为各个类别的IoU
            return IoU
    
        def meanIntersectionOverUnion(self):
            mIoU = np.nanmean(self.IntersectionOverUnion())  # 求各类别IoU的平均
            return mIoU
    
        def genConfusionMatrix(self, imgPredict, imgLabel):  #
            """
            同FCN中score.py的fast_hist()函数,计算混淆矩阵
            :param imgPredict:
            :param imgLabel:
            :return: 混淆矩阵
            """
            # remove classes from unlabeled pixels in gt image and predict
            mask = (imgLabel >= 0) & (imgLabel < self.numClass)
            label = self.numClass * imgLabel[mask] + imgPredict[mask]
            count = np.bincount(label, minlength=self.numClass ** 2)
            confusionMatrix = count.reshape(self.numClass, self.numClass)
            # print(confusionMatrix)
            return confusionMatrix
    
        def Frequency_Weighted_Intersection_over_Union(self):
            """
            FWIoU,频权交并比:为MIoU的一种提升,这种方法根据每个类出现的频率为其设置权重。
            FWIOU =     [(TP+FN)/(TP+FP+TN+FN)] *[TP / (TP + FP + FN)]
            """
            freq = np.sum(self.confusion_matrix, axis=1) / np.sum(self.confusion_matrix)
            iu = np.diag(self.confusion_matrix) / (
                    np.sum(self.confusion_matrix, axis=1) + np.sum(self.confusion_matrix, axis=0) -
                    np.diag(self.confusion_matrix))
            FWIoU = (freq[freq > 0] * iu[freq > 0]).sum()
            return FWIoU
    
        def addBatch(self, imgPredict, imgLabel):
            assert imgPredict.shape == imgLabel.shape
            self.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)  # 得到混淆矩阵
            return self.confusionMatrix
    
        def reset(self):
            self.confusionMatrix = np.zeros((self.numClass, self.numClass))
    
    
    # 测试内容
    if __name__ == '__main__':
        imgPredict = cv2.imread("../result/qqq.png")
        imgLabel = cv2.imread("../result/img.jpg")
        #"../result/standard/mask/SM50GRADE1PLAIN(1).jpg"
        #"../result/predict/image/SM50GRADE1BLANKET(1).jpg"
    
        imgPredict = np.array(cv2.cvtColor(imgPredict, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)
        imgLabel = np.array(cv2.cvtColor(imgLabel, cv2.COLOR_BGR2GRAY) / 255., dtype=np.uint8)
        # imgPredict = np.array([0, 0, 1, 1, 2, 2])  # 可直接换成预测图片
        # imgLabel = np.array([0, 0, 1, 1, 2, 2])  # 可直接换成标注图片
    
        metric = SegmentationMetric(2)  # 2表示有2个分类,有几个分类就填几
        ConfusionMatrix = metric.addBatch(imgPredict, imgLabel)
        pa = metric.pixelAccuracy()
        cpa = metric.classPixelAccuracy()
        mpa = metric.meanPixelAccuracy()
        IoU = metric.IntersectionOverUnion()
        mIoU = metric.meanIntersectionOverUnion()
        print('ConfusionMatrix is :\n', ConfusionMatrix)
        print('PA is : %f' % pa)
        print('cPA is :', cpa)
        print('mPA is : %f' % mpa)
        print('IoU is : ', IoU)
        print('mIoU is : ', mIoU)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113

    效果图如下:
    在这里插入图片描述

  • 相关阅读:
    可扩展性对物联网管理系统有哪些影响?
    redis淘汰策略
    Linux之(14)shell(6)gawk进阶
    JVM(三) 垃圾回收
    基于卷积的神经网络系统,fcn全卷积神经网络搭建
    牛客小白月赛61-C-小喵觅食
    android的本地通讯录获取以及RecyclerView展示
    [附源码]计算机毕业设计医疗器械公司公告管理系统Springboot程序
    使用ArcGIS-SDK显示海图
    二叉排序树的创建与添加操作(思路分析)
  • 原文地址:https://blog.csdn.net/qq_41264055/article/details/128000668