目录
- import torch
-
- weights_files = './test.pt' # 权重文件路径
- weights = torch.load(weights_files) # 加载权重文件
-
- for k, v in weights.items(): # key, value
- print(k, v) # 打印参数名、参数值
- '''
- Class Model(nn.module):
- #...
- '''
- # or
- # from .xx.yy import Model
-
- model = Model() # 初始化模型
- model_dict = model.state_dict() # 模型参数字典
- for k, v in model_dict.items(): # key, value
- print(k, v) # 打印参数名、参数值
-
- model = Model() # 初始化模型
- model_dict = model.state_dict() # 模型参数
-
- weights_files = './test.pt' # 权重文件
- weights = torch.load(weights_files) # 权重文件参数
-
- # 模型参数和权重参数匹配(可能新模型会作改动)
- match_dict = {k: v for k, v in weights.items() if k in model_dict}
-
- # 根据参数匹配,将权重文件的参数加载到模型参数
- model_dict.update(match_dict) # 相当于把预训练网络层的参数更新进来
-
- # 更新模型参数
- model.load_state_dict(model_dict)
- model = Model()
- for name, param in model.named_parameters():
- # print(name)
- # print(param)
- if name == 'xxx': # 选择参数进行固定
- param.requires_grad = False
或者使用以下方式固定参数:
- model = Model()
-
- for i, param in enumerate(model.parameters()):
- if i < 5: # 根据已知的参数顺序,选择参数进行固定
- # print(param)
- param.requires_grad = False