• 罗尔中值定理习题


    微分中值定理之罗尔中值定理

    例1

    函数 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上连续,在 ( 0 , 1 ) (0,1) (0,1)内可导, f ( 0 ) = e , f ( 1 ) = 1 f(0)=e,f(1)=1 f(0)=e,f(1)=1
    求证: ∃ ξ ∈ ( 0 , 1 ) \exist\xi \in (0,1) ξ(0,1)使得 f ( ξ ) + f ′ ( ξ ) = 0 f(\xi)+f'(\xi)=0 f(ξ)+f(ξ)=0

    解:
    \qquad F ( x ) = e x f ( x ) F(x)=e^xf(x) F(x)=exf(x)

    F ( 0 ) = e 0 f ( 0 ) = e , F ( 1 ) = e 1 f ( 1 ) = e \qquad F(0)=e^0f(0)=e,F(1)=e^1f(1)=e F(0)=e0f(0)=e,F(1)=e1f(1)=e

    ∵ F ( x ) \qquad \because F(x) F(x) [ 0 , 1 ] [0,1] [0,1]上连续,在 ( 0 , 1 ) (0,1) (0,1)内可导, F ( 0 ) = F ( 1 ) = e F(0)=F(1)=e F(0)=F(1)=e

    ∴ \qquad \therefore 由罗尔定理, ∃ ξ ∈ ( 0 , 1 ) \exist \xi \in(0,1) ξ(0,1),使 F ′ ( ξ ) = 0 F'(\xi)=0 F(ξ)=0

    \qquad e ξ f ( ξ ) + e ξ f ′ ( ξ ) = 0 e^\xi f(\xi)+e^\xi f'(\xi)=0 eξf(ξ)+eξf(ξ)=0

    ∵ \qquad \because ξ ∈ ( 0 , 1 ) \xi\in (0,1) ξ(0,1)时, e ξ > 0 e^\xi >0 eξ>0

    ∴ f ( ξ ) + f ′ ( ξ ) = 0 \qquad \therefore f(\xi)+f'(\xi)=0 f(ξ)+f(ξ)=0

    \qquad 得证 ∃ ξ ∈ ( 0 , 1 ) \exist\xi \in (0,1) ξ(0,1)使得 f ( ξ ) + f ′ ( ξ ) = 0 f(\xi)+f'(\xi)=0 f(ξ)+f(ξ)=0


    例2

    函数 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上连续,在 ( 0 , 1 ) (0,1) (0,1)内可导, f ( 1 ) = 0 f(1)=0 f(1)=0
    求证: ∃ ξ ∈ ( 0 , 1 ) \exist\xi \in (0,1) ξ(0,1)使得 2 f ( ξ ) + ξ f ′ ( ξ ) = 0 2f(\xi)+\xi f'(\xi)=0 2f(ξ)+ξf(ξ)=0

    解:
    \qquad F ( x ) = x 2 f ( x ) F(x)=x^2f(x) F(x)=x2f(x)

    F ( 0 ) = 0 × f ( 0 ) = 0 , F ( 1 ) = 1 × f ( 1 ) = 0 \qquad F(0)=0\times f(0)=0,F(1)=1\times f(1)=0 F(0)=0×f(0)=0,F(1)=1×f(1)=0

    ∵ F ( x ) \qquad \because F(x) F(x) [ 0 , 1 ] [0,1] [0,1]上连续,在 ( 0 , 1 ) (0,1) (0,1)内可导, F ( 0 ) = F ( 1 ) = 0 F(0)=F(1)=0 F(0)=F(1)=0

    ∴ \qquad \therefore 由罗尔定理, ∃ ξ ∈ ( 0 , 1 ) \exist \xi\in(0,1) ξ(0,1),使 F ′ ( ξ ) = 0 F'(\xi)=0 F(ξ)=0

    \qquad 2 ξ f ( ξ ) + ξ 2 f ′ ( ξ ) = 0 2\xi f(\xi)+\xi^2f'(\xi)=0 2ξf(ξ)+ξ2f(ξ)=0

    ∵ \qquad \because ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ(0,1)时, ξ > 0 \xi>0 ξ>0

    ∴ 2 f ( ξ ) + ξ f ′ ( ξ ) = 0 \qquad \therefore 2f(\xi)+\xi f'(\xi)=0 2f(ξ)+ξf(ξ)=0

    \qquad 得证 ∃ ξ ∈ ( 0 , 1 ) \exist\xi \in (0,1) ξ(0,1)使得 2 f ( ξ ) + ξ f ′ ( ξ ) = 0 2f(\xi)+\xi f'(\xi)=0 2f(ξ)+ξf(ξ)=0


    总结

    当题目给出 f ( x ) f(x) f(x)的若干个值 f ( x 1 ) , f ( x 2 ) … f(x_1),f(x_2)\dots f(x1),f(x2),并求证一个由 ξ , f ( ξ ) , f ′ ( ξ ) \xi,f(\xi),f'(\xi) ξ,f(ξ),f(ξ)组成的式子为零时,我们可以考虑构造一个函数 F ( x ) F(x) F(x),根据罗尔定理得出 ∃ ξ ∈ ( a , b ) \exist \xi\in(a,b) ξ(a,b)使得 F ′ ( ξ ) = 0 F'(\xi)=0 F(ξ)=0,然后整理一下式子即可得证。

  • 相关阅读:
    存入Redis的Token过期,怎么办
    cookie和session的区别
    伪类选择器——点击文本时可以用于改变颜色以及注意事项和链接伪类在实际开发中的写法
    【Go】【反射】反射基本介绍和使用
    漫画 | 20年了,走投无路的CPU终于躺平了!
    IFD-x 微型红外成像仪(模块)的温度测量和成像精度
    ubuntu 22.04 图文安装
    LINUX安装KDC服务
    使用百度飞桨EasyDL实现AI文章自动分类
    网络安全人才就业前景如何?
  • 原文地址:https://blog.csdn.net/tanjunming2020/article/details/127941059