public class FutureTask<V> implements RunnableFuture<V>
public interface RunnableFuture<V> extends Runnable, Future<V>
从继承关系不难看出,该类用于任务执行后的结果获取,任务可以是同步的也可以是异步,主要用于异步获取,调用线程不必阻塞等待任务执行结果,从而提高系统的吞吐量。
private volatile int state;
private static final int NEW = 0;
private static final int COMPLETING = 1;
private static final int NORMAL = 2;
private static final int EXCEPTIONAL = 3;
private static final int CANCELLED = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED = 6;
private Callable<V> callable;
private Object outcome;
private volatile Thread runner;
private volatile WaitNode waiters;
public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW; // ensure visibility of callable
}
public FutureTask(Runnable runnable, V result) {
this.callable = Executors.callable(runnable, result);
this.state = NEW; // ensure visibility of callable
}
我们知道Callable有返回值,而Runnable线程执行并没有返回值,那么它是怎么将执行结果返回的呢?这里看下Executors.callable(runnable, result)是怎么处理的。
public static <T> Callable<T> callable(Runnable task, T result) {
if (task == null)
throw new NullPointerException();
return new RunnableAdapter<T>(task, result);
}
static final class RunnableAdapter<T> implements Callable<T> {
final Runnable task;
final T result;
RunnableAdapter(Runnable task, T result) {
this.task = task;
this.result = result;
}
public T call() {
task.run();
return result;
}
}
这样子看来,它的执行结果是我们自己传进去的?是地,如果想要任务自己的执行结果调用Callable线程就好了。
这里我们主要分析:
这几个方法,其他自行查看相关文档或者源码。
先上源码:
public void run() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
执行流程分4部分:
执行流程图如下图1.4.1所示:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
任务正常执行,返回结果后,会执行set()方法把任务赋值给outcome,上源码:
protected void set(V v) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = v;
UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
finishCompletion();
}
}
如果在run执行任务的过程中产生异常,catch捕获异常后,会执行该方法,源码如下:
protected void setException(Throwable t) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = t;
UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
finishCompletion();
}
}
执行流程
不管是正常执行后set()方法还是异常执行setException()方法,方法内部都会执行该方法,源码如下:
private void finishCompletion() {
// assert state > COMPLETING;
for (WaitNode q; (q = waiters) != null;) {
if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
LockSupport.unpark(t);
}
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
}
break;
}
}
done();
callable = null; // to reduce footprint
}
该方法主要任务就是清理waitNode上等待的线程,具体过程如下:
源码如下:
public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING)
s = awaitDone(false, 0L);
return report(s);
}
源码如下:
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
}
int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
else if (q == null)
q = new WaitNode();
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
q.next = waiters, q);
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}
else
LockSupport.park(this);
}
}
执行流程图如下:
主要职责就是等待任务执行完毕,且设置结果;否则就阻塞等待。如果中间被中断或取消执行,也会结束。
源码如下:
private void removeWaiter(WaitNode node) {
if (node != null) {
node.thread = null;
retry:
for (;;) { // restart on removeWaiter race
for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
s = q.next;
if (q.thread != null)
pred = q;
else if (pred != null) {
pred.next = s;
if (pred.thread == null) // check for race
continue retry;
}
else if (!UNSAFE.compareAndSwapObject(this, waitersOffset,
q, s))
continue retry;
}
break;
}
}
}
主要任务就是如果参数给定的等待节点不为空,把给定节点 thread赋值null。然后移除阻塞等待队列中等待节点thread为空的节点。
源码如下:
private V report(int s) throws ExecutionException {
Object x = outcome;
if (s == NORMAL)
return (V)x;
if (s >= CANCELLED)
throw new CancellationException();
throw new ExecutionException((Throwable)x);
}
方法用于返回执行结果:
线程池执行任务,处理直接执行execute()方法,如果任务为异常且需要返回值,可以调用submit方法,源码如下:
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask);
return ftask;
}
execute()和submit()执行任务主要区别就是前者不需要返回值而后者有返回值。
前面讲解的主要是执行单个任务的情况,如果需要批量执行任务,这可以调用invokeAll()或者invokeAny()方法。
invokeAll()和invokeAny()执行流程相对简单,这里不在详述。
在构建线程池对象的时候,建议使用该类。该类通过静态方法返回多种线程池对象,常用三种线程池简单使用可参考之前写的文章详解-ThreadPollExecutor-并发编程(Java)或者自行查阅相关文档。其他的线程池类型,等以后用到的时候在讲解。
我们来看下其中一种线程池的构建,源代码如下:
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
它是直接new ThreadPoolExecutor的对象,那么我们为什么不直接自己new一个,还要在包装一下呢?这里用到了一种设计模式,具体的等后面我们学习设计模式的时候在讲解。