503. 下一个更大元素 II
思路:
方法一:
将数组复制一份拼接在尾部,然后对整个新数组利用单调栈求结果,最后将结果resize成原数组的大小
class Solution {
public:
vector<int> nextGreaterElements(vector<int>& nums) {
int nums_size = nums.size();
nums.insert(nums.end(), nums.begin(), nums.end()); // 两个数组拼接在一起
nums_size *= 2;
vector<int> result(nums_size, -1);
stack<int> stk;
stk.push(0);
for (int i = 1; i < nums_size; i++) {
while (!stk.empty() && nums[i] > nums[stk.top()]) {
result[stk.top()] = nums[i];
stk.pop();
}
stk.push(i);
}
result.resize(nums_size / 2);
return result;
}
};
方法二:
优化一下,把插入元素和resize操作去掉,模拟数组复制两份的情况
class Solution {
public:
vector<int> nextGreaterElements(vector<int>& nums) {
int nums_size = nums.size();
vector<int> result(nums_size, -1);
stack<int> stk;
stk.push(0);
for (int j = 1; j < nums_size * 2; j++) {
int i = j % nums_size;
while (!stk.empty() && nums[i] > nums[stk.top()]) {
result[stk.top()] = nums[i];
stk.pop();
}
stk.push(i);
}
return result;
}
};
42. 接雨水
思路1:双指针
遍历整个数组,找到每个柱子左右最高的柱子来判断该列可以接到多少水,累计所有柱子可以接到的水量。(首尾柱子不接水)
超时了(>人<;)
时间复杂度:
O
(
n
2
)
O(n^2)
O(n2)
空间复杂度:
O
(
1
)
O(1)
O(1)
class Solution {
public:
int trap(vector<int>& height) {
int size = height.size();
int sum = 0;
for (int i = 1; i < size - 1; i++) {
int left_height = height[i];
int right_height = height[i];
for (int j = i - 1; j >= 0; j--) left_height = max(left_height, height[j]);
for (int j = i + 1; j < size; j++) right_height = max(right_height, height[j]);
sum += min(left_height, right_height) - height[i];
}
return sum;
}
};
思路2:动态规划
双指针多次重复计算去找每一列的左右边界,使用数组将左右边界的值记录下来,可以省去重复的查找,这里用到了动态规划的思想,递推公式如下:
- 左边界:
leftheight[i] = max(leftheight[i], leftheight[i - 1]);- 右边界:
rightheight[i] = max(rightheight[i], rightheight[i - 1];
时间复杂度:
O
(
n
)
O(n)
O(n)
空间复杂度:
O
(
n
)
O(n)
O(n)
class Solution {
public:
int trap(vector<int>& height) {
int size = height.size();
int sum = 0;
vector<int> left_h(size, 0);
vector<int> right_h(size, 0);
left_h[0] = height[0];
for (int i = 1; i < size; i++) left_h[i] = max(left_h[i - 1], height[i]);
right_h[size - 1] = height[size - 1];
for (int i = size - 2; i >= 0; i--) right_h[i] = max(right_h[i + 1], height[i]);
for (int i = 1; i < size - 1; i++) sum += max(0, min(left_h[i], right_h[i]) - height[i]);
return sum;
}
};
思路3:单调栈
按行计算
计算获取单调栈,每次出现比栈顶元素大的元素时,说明出现了凹槽,该凹槽内的储水量是,高度是左右边界最小值与栈顶元素的差,宽度是右边界-左边界-1
时间复杂度:
O
(
n
)
O(n)
O(n)
空间复杂度:
O
(
n
)
O(n)
O(n)
class Solution {
public:
int trap(vector<int>& height) {
int size = height.size();
int sum = 0;
stack<int> stk;
stk.push(0);
for (int i = 1; i < size; i++) {
while (!stk.empty() && height[i] > height[stk.top()]) {
int mid = height[stk.top()];
stk.pop();
if (!stk.empty()) { // 有左右边界则可以储水
int h = min(height[i], height[stk.top()]) - mid;
int w = i - stk.top() - 1;
sum += h * w;
} // 只有单个边界不能存水
}
stk.push(i);
}
return sum;
}
};