需要源码和数据集请点赞关注收藏后评论区留言留下QQ~~~
极端天气情况一直困扰着人们的工作和生活。部分企业或者工种对极端天气的要求不同,但是目前主流的天气推荐系统是直接将天气信息推送给全部用户。这意味着重要的天气信息在用户手上得不到筛选,降低用户的满意度,甚至导致用户的经济损失。我们计划开发一个基于图神经网络的天气靶向模型,根据用户的历史交互行为,判断不同天气对他的利害程度。如果有必要,则将该极端天气情况推送给该用户,让其有时间做好应对准备。该模型能够减少不必要的信息传递,提高用户的体验感。
四、模型介绍
(一)数据集共有三个txt文件,分别是user.txt,weather.txt,rating.txt。这些文件一共包含900名用户,1600个天气状况,95964条用户的历史交互记录。
用户的信息记录在user.txt中。格式如下:
用户ID\t年龄\t性别\t职业\t地理位置
天气的信息记录在weather.txt中。格式如下:
天气ID\t天气类型\t温度\t湿度\t风速
用户的历史交互记录在rating.txt中。格式如下:
用户ID\t天气ID\t评分
如下图 data里面存放了数据集

开始训练 可以看到第一行显示了一些训练的基本配置内容 包括用的设备cpu 训练批次 学习率等等

可以看出随着训练次数的增加 损失率在不断降低
最后会自动选出一个最佳的测试和训练集的损失值
结果可视化如下

部分源码如下
train类
- import pandas as pd
- import time
- from utils import fix_seed_torch, draw_loss_pic
- import argparse
- from model import GCN
- from Logger import Logger
- from mydataset import MyDataset
- import torch
- from torch.nn import MSELoss
- from torch.optim import Adam
- from torch.utils.data import DataLoader, random_split
- import sys
- import os
- os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
-
-
- # 固定随机数种子
- fix_seed_torch(seed=2021)
- # 设置训练的超参数
- parser = argparse.ArgumentParser()
- parser.add_argument('--gcn_layers', type=int, default=2, help='the number of gcn layers')
- parser.add_argument('--n_epochs', type=int, default=20, help='the number of epochs')
- parser.add_argument('--embedSize', type=int, default=64, help='dimension of user and entity embeddings')
- parser.add_argument('--batch_size', type=int, default=1024, help='batch size')
- parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
- parser.add_argument('--ratio', type=float, default=0.8, help='size of training dataset')
- args = parser.parse_args()
- # 设备是否支持cuda
- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
- args.device = device
- # 读取用户特征、天气特征、评分
- user_feature = pd.read_csv('./data/user.txt', encoding='utf-8', sep='\t')
- item_feature = pd.read_csv('./data/weather.txt', encoding='utf-8', sep='\t')
- rating = pd.read_csv('./data/rating.txt', encoding='utf-8', sep='\t')
- # 构建数据集
- dataset = MyDataset(rating)
- trainLen = int(args.ratio * len(dataset))
- train, test = random_split(dataset, [trainLen, len(dataset) - trainLen])
- train_loader = DataLoader(train, batch_size=args.batch_size, shuffle=True, pin_memory=True)
- test_loader = DataLoader(test, batch_size=len(test))
- # 记录训练的超参数
- start_time = '{}'.format(time.strftime("%m-%d-%H-%M", time.localtime()))
- logger = Logger('./log/log-{}.txt'.format(start_time))
- logger.info(' '.join('%s: %s' % (k, str(v)) for k, v in sorted(dict(vars(args)).items())))
- # 定义模型
- model = GCN(args, user_feature, item_feature, rating)
- model.to(device)
- # 定义优化器
- optimizer = Adam(model.parameters(), lr=args.lr, weight_decay=0.001)
- # 定义损失函数
- loss_function = MSELoss()
- train_result = []
- test_result = []
- # 最好的epoch
- best_loss = sys.float_info.max
- # 训练
- for i in range(args.n_epochs):
- model.train()
- for batch in train_loader:
- optimizer.zero_grad()
- prediction=model(batch[0].to(device),batch[1].to(device))
- train_loss=torch.sqrt(loss_function(batch[2].float().to(device),prediction))
- train_loss.backward()
- optimizer.step()
- train_result.append(train_loss.item())
- model.eval()
- for data in test_loader:
- prediction=model(data[0].to(device),data[1].to(device))
- test_loss=torch.sqrt(loss_function(data[2].float().to(device),prediction))
- test_loss=test_loss.item()
- if best_loss>test_loss:
- best_loss=test_loss
- torch.save(model.state_dict(),'./model/bestModeParms-{}.pth'.format(start_time))
- test_result.append(test_loss)
- logger.info("Epoch{:d}:trainLoss{:.4f},testLoss{:.4f}".format(i,train_loss,test_loss))
- else:
- model.load_state_dict(torch.load("./model/bestModeParms-11-18-19-47.pth"))
- user_id=input("请输入用户id")
- item_num=rating['itemId'].max()+1
- u=torch.tensor([int(user_id)for i in range(item_num)],dtype=float)
- 气ID".format(user_id))
- print(i[0]for i in result)
- # 画图
- draw_loss_pic(train_result, test_result)
Logger类
- import sys
- import os
- import logging
- class Logger(object):
- def __init__(self, filename):
- self.logger = logging.getLogger(filename)
- self.logger.setLevel(logging.DEBUG)
- formatter = logging.Formatter('%(asctime)s: %(message)s',
- datefmt='%Y-%m-%d %H-%M-%S')
- # write into file
- fh = logging.FileHandler(filename)
- fh.setLevel(logging.DEBUG)
- fh.setFormatter(formatter)
- # show on console
- ch = logging.StreamHandler(sys.stdout)
- ch.setLevel(logging.DEBUG)
- ch.setFormatter(formatter)
- # add to Handler
- self.logger.addHandler(fh)
- self.logger.addHandler(ch)
- def _flush(self):
- for handler in self.logger.handlers:
- handler.flush()
- def info(self, message):
- self.logger.info(message)
- self._flush()
model类
- import numpy as np
- import torch.nn
- import torch.nn as nn
- from utils import *
- from torch.nn import Module
- import scipy.sparse as sp
-
-
- class GCN_Layer(Module):
- def __init__(self,inF,outF):
- super(GCN_Layer,self).__init__()
- self.W1=torch.nn.Linear(in_features=inF,out_features=outF)
- self.W2=torch.nn.Linear(in_features=inF,out_features=outF)
- def forward(self,graph,selfLoop,features):
- part1=self.W1(torch.sparse.mm(graph+selfLoop,features))
- part2 = self.W2(torch.mul(torch.sparse.mm(graph,features),features))
- return nn.LeakyReLU()(part1+part2)
-
-
-
- ######################
- # 请你补充代码 #
- ######################
-
-
- class GCN(Module):
- def __init__(self, args, user_feature, item_feature, rating):
- super(GCN, self).__init__()
- self.args = args
- self.device = args.device
- self.user_feature = user_feature
- self.item_feature = item_feature
- self.rating = rating
- self.num_user = rating['user_id'].max() + 1
- self.num_item = rating['item_id'].max() + 1
- # user embedding
- self.user_id_embedding = nn.Embedding(user_feature['id'].max() + 1, 32)
- self.user_age_embedding = nn.Embedding(user_feature['age'].max() + 1, 4)
- self.user_gender_embedding = nn.Embedding(user_feature['gender'].max() + 1, 2)
- self.user_occupation_embedding = nn.Embedding(user_feature['occupation'].max() + 1, 8)
- self.user_location_embedding = nn.Embedding(user_feature['location'].max() + 1, 18)
- # item embedding
- self.item_id_embedding = nn.Embedding(item_feature['id'].max() + 1, 32)
- self.item_type_embedding = nn.Embedding(item_feature['type'].max() + 1, 8)
- self.item_temperature_embedding = nn.Embedding(item_feature['temperature'].max() + 1, 8)
- self.item_humidity_embedding = nn.Embedding(item_feature['humidity'].max() + 1, 8)
- self.item_windSpeed_embedding = nn.Embedding(item_feature['windSpeed'].max() + 1, 8)
- # 自循环
- self.selfLoop = self.getSelfLoop(self.num_user + self.num_item)
- # 堆叠GCN层
- self.GCN_Layers = torch.nn.ModuleList()
- for _ in range(self.args.gcn_layers):
- self.GCN_Layers.append(GCN_Layer(self.args.embedSize, self.args.embedSize))
- self.graph = self.buildGraph()
- self.transForm = nn.Linear(in_features=self.args.embedSize * (self.args.gcn_layers + 1),
- out_features=self.args.embedSize)
-
- def getSelfLoop(self, num):
- i = torch.LongTensor(
- [[k for k in range(0, num)], [j for j in range(0, num)]])
- val = torch.FloatTensor([1] * num)
- return torch.sparse.FloatTensor(i, val).to(self.device)
-
- def buildGraph(self):
- rating=self.rating.values
- graph=sp.coo_matrix(
- (rating[:,2],(rating[:,0],rating[:,1])),shape=(self.num_user,self.num_item)).tocsr()
- graph=sp.bmat([[sp.csr_matrix((graph.shape[0],graph.shape[0])),graph],
- [graph.T,sp.csr_matrix((graph.shape[1],graph.shape[1]))]])
-
- row_sum_sqrt=sp.diags(1/(np.sqrt(graph.sum(axis=1).A.ravel())+1e-8))
- col_sum_sqrt = sp.diags(1 / (np.sqrt(graph.sum(axis=0).A.ravel()) + 1e-8))
- graph=row_sum_sqrt@graph@col_sum_sqrt
- graph=graph.tocoo()
- values=graph.data
- indices=np.vstack((graph.row,graph.col))
- graph=torch.sparse.FloatTensor(torch.LongTensor(indices),torch.FloatTensor(values),torch.Size(graph.shape))
- return graph.to(self.device)
- ######################
- # 请你补充代码 #
- ######################
-
- def getFeature(self):
- # 根据用户特征获取对应的embedding
- user_id = self.user_id_embedding(torch.tensor(self.user_feature['id']).to(self.device))
- age = self.user_age_embedding(torch.tensor(self.user_feature['age']).to(self.device))
- gender = self.user_gender_embedding(torch.tensor(self.user_feature['gender']).to(self.device))
- occupation = self.user_occupation_embedding(torch.tensor(self.user_feature['occupation']).to(self.device))
- location = self.user_location_embedding(torch.tensor(self.user_feature['location']).to(self.device))
- user_emb = torch.cat((user_id, age, gender, occupation, location), dim=1)
- # 根据天气特征获取对应的embedding
- item_id = self.item_id_embedding(torch.tensor(self.item_feature['id']).to(self.device))
- item_type = self.item_type_embedding(torch.tensor(self.item_feature['type']).to(self.device))
- temperature = self.item_temperature_embedding(torch.tensor(self.item_feature['temperature']).to(self.device))
- humidity = self.item_humidity_embedding(torch.tensor(self.item_feature['humidity']).to(self.device))
- windSpeed = self.item_windSpeed_embedding(torch.tensor(self.item_feature['windSpeed']).to(self.device))
- item_emb = torch.cat((item_id, item_type, temperature, humidity, windSpeed), dim=1)
- # 拼接到一起
- concat_emb = torch.cat([user_emb, item_emb], dim=0)
- return concat_emb.to(self.device)
-
- def forward(self, users, items):
- features=self.getFeature()
- final_emb=features.clone()
- for GCN_Layer in self.GCN_Layers:
- features=GCN_Layer(self.graph,self.selfLoop,features)
- final_emb=torch.cat((final_emb,features.clone()),dim=1)
- user_emb,item_emb=torch.split(final_emb,[self.num_user,self.num_item])
- user_emb=user_emb[users]
- item_emb=item_emb[items]
- user_emb=self.transForm(user_emb)
- item_emb=self.transForm(item_emb)
-
- prediction=torch.mul(user_emb,item_emb).sum(1)
- return prediction
- ######################
- # 请你补充代码 #
- ######################
mydataset类
- from torch.utils.data import Dataset
- import pandas as pd
-
-
- class MyDataset(Dataset):
- def __init__(self, rating):
- super(Dataset, self).__init__()
- self.user = rating['user_id']
- self.weather = rating['item_id']
- self.rating = rating['rating']
-
- def __len__(self):
- return len(self.rating)
-
- def __getitem__(self, item):
- return self.user[item], self.weather[item], self.rating[item]
-
utils类
- from torch.utils.data import Dataset
- import pandas as pd
-
-
- class MyDataset(Dataset):
- def __init__(self, rating):
- super(Dataset, self).__init__()
- self.user = rating['user_id']
- self.weather = rating['item_id']
- self.rating = rating['rating']
-
- def __len__(self):
- return len(self.rating)
-
- def __getitem__(self, item):
- return self.user[item], self.weather[item], self.rating[item]
-
创作不易 觉得有帮助请点赞关注收藏~~~