• sgu 176 Flow construction (有汇源有上下界的最小流)


    sgu 176  Flow construction 

    链接:http://acm.sgu.ru/problem.php?contest=0&problem=176
    题意:有一个加工厂,里面有n台机器,起点为1终点为n。中间的生产环节有货物限制,输入m个环节。每个环节有u,v,z,c四个数字。u表示起始机器,v表示终止机器,如果c为1,那么这条边的流量必须为z。如果c为0,那么流量在[0, z]之间。保证没有自环,没有重边,只有1号机器能够生产货物,n号机器消耗货物,其他机器不能积累货物。问满足条件的情况下,1号机器最少要生产多少货物。
    思路: 有源汇有上下界的最小流 1. 增设一个超级源点,一个超级汇点,以同样的方式将原网络转化为没有流量下界限制的新网络。 2. 不连接原先网络的源汇点,并以超级源汇点为起点,终点做一次最大流maxflow1。 3. 此时从汇点向源点连接一条流量为INF的边,再以超级源汇点做一次网络流maxflow2。 4. 如果从源点出发的流均为满流,则有最小流,最小流的值为从汇点流向源点的流量。 * 在判断是否为满流时,条件为 maxflow1 + maxflow2 = 超级源点流出的流量 * 可以理解为第一遍做网络流时并无T->S的边,所以S->T的流量在第一遍时都已尽力往其他边流了. 于是加上T->S这条边后,都是些剩余的流不到其他边的流量. 从而达到尽可能减少T->S这边上的流量的效果,即减小了最终答案.


    代码:

    /*
    ID: wuqi9395@126.com
    PROG:
    LANG: C++
    */
    #include
    #include
    #include
    #include
    #include
    #include
    #include
    #include
    #include
    #include
    #include
    #include
    #include
    using namespace std;
    #define INF (1 << 30)
    #define LINF (1LL << 60)
    #define PI acos(-1.0)
    #define mem(a, b) memset(a, b, sizeof(a))
    #define rep(i, a, n) for (int i = a; i < n; i++)
    #define per(i, a, n) for (int i = n - 1; i >= a; i--)
    #define eps 1e-6
    #define debug puts("===============")
    #define pb push_back
    #define mkp make_pair
    #define all(x) (x).begin(),(x).end()
    #define fi first
    #define se second
    #define SZ(x) ((int)(x).size())
    #define POSIN(x,y) (0 <= (x) && (x) < n && 0 <= (y) && (y) < m)
    typedef long long ll;
    typedef unsigned long long ULL;
    const int maxn = 1000;
    const int maxm = 100000;
    struct node {
        int v;    // vertex
        int cap;    // capacity
        int flow;   // current flow in this arc
        int nxt;
    } e[maxm * 2];
    int g[maxn], cnt;
    int st, ed, n;
    int S, D;
    int N, M;
    int tot[maxn], low[maxm], id[maxm];
    void add(int u, int v, int c, int k) {
        e[++cnt].v = v;
        e[cnt].cap = c;
        e[cnt].flow = 0;
        e[cnt].nxt = g[u];
        g[u] = cnt;
        id[k] = cnt;
    
        e[++cnt].v = u;
        e[cnt].cap = 0;
        e[cnt].flow = 0;
        e[cnt].nxt = g[v];
        g[v] = cnt;
        id[0] = 0;
    }
    
    void init() {
        memset(g, 0, sizeof(g));
        cnt = 1;
        S = 1, D = N, st = N + 1, ed = N + 2;
        int u, v, z, c;
        for (int i = 1; i <= M; i++) {
            scanf("%d%d%d%d", &u, &v, &z, &c);
            if (c == 0) {
                add(u, v, z, i);
                low[i] = 0;
            } else {
                low[i] = z;
                tot[u] -= z;
                tot[v] += z;
            }
        }
        n = N + 4;
    }
    int dist[maxn], numbs[maxn], q[maxn];
    void rev_bfs() {
        int font = 0, rear = 1;
        for (int i = 0; i <= n; i++) { //n为总点数
            dist[i] = maxn;
            numbs[i] = 0;
        }
        q[font] = ed;
        dist[ed] = 0;
        numbs[0] = 1;
        while(font != rear) {
            int u = q[font++];
            for (int i = g[u]; i; i = e[i].nxt) {
                if (e[i ^ 1].cap == 0 || dist[e[i].v] < maxn) continue;
                dist[e[i].v] = dist[u] + 1;
                ++numbs[dist[e[i].v]];
                q[rear++] = e[i].v;
            }
        }
    }
    int maxflow() {
        rev_bfs();
        int u, totalflow = 0;
        int curg[maxn], revpath[maxn];
        for(int i = 0; i <= n; ++i) curg[i] = g[i];
        u = st;
        while(dist[st] < n) {
            if(u == ed) {   // find an augmenting path
                int augflow = INF;
                for(int i = st; i != ed; i = e[curg[i]].v)
                    augflow = min(augflow, e[curg[i]].cap);
                for(int i = st; i != ed; i = e[curg[i]].v) {
                    e[curg[i]].cap -= augflow;
                    e[curg[i] ^ 1].cap += augflow;
                    e[curg[i]].flow += augflow;
                    e[curg[i] ^ 1].flow -= augflow;
                }
                totalflow += augflow;
                u = st;
            }
            int i;
            for(i = curg[u]; i; i = e[i].nxt)
                if(e[i].cap > 0 && dist[u] == dist[e[i].v] + 1) break;
            if(i) {   // find an admissible arc, then Advance
                curg[u] = i;
                revpath[e[i].v] = i ^ 1;
                u = e[i].v;
            } else {    // no admissible arc, then relabel this vertex
                if(0 == (--numbs[dist[u]])) break;    // GAP cut, Important!
                curg[u] = g[u];
                int mindist = n;
                for(int j = g[u]; j; j = e[j].nxt)
                    if(e[j].cap > 0) mindist = min(mindist, dist[e[j].v]);
                dist[u] = mindist + 1;
                ++numbs[dist[u]];
                if(u != st)
                    u = e[revpath[u]].v;    // Backtrack
            }
        }
        return totalflow;
    }
    int lowbound_minflow() {
        long long  sum = 0;
        for (int i = 1; i <= N; i++) {
            if (tot[i] > 0) add(st, i, tot[i], 0), sum += tot[i];
            if (tot[i] < 0) add(i, ed, -tot[i], 0);
        }
        int dd = maxflow();
        add(D, S, INF, M + 1);
        dd += maxflow();
        if (dd != sum) return -1;
        return e[id[M + 1]].flow;
    }
    int main () {
        scanf("%d%d", &N, &M);
        init();
        int mn = lowbound_minflow();
        if (mn == -1) puts("Impossible");
        else {
            printf("%d\n", mn);
            for (int i = 1; i < M; i++) {
                if (low[i] == 0) printf("%d ", e[id[i]].flow);
                else printf("%d ", low[i]);
            }
            if (low[M] == 0) printf("%d\n", e[id[M]].flow);
            else printf("%d\n", low[M]);
        }
        return 0;
    }
    
  • 相关阅读:
    【安全类书籍-3】XSS跨站脚剖析与防御
    TensorFlow Playground神经网络演示工具使用方法详解
    SUSE12安装SAP HANA 2.0内存数据库
    创建单例模式的方法
    【Vue面试题二十三】、你了解vue的diff算法吗?说说看
    解决kafka消费积压问题
    Java短信验证码生成
    [java入门到精通] 11 泛型,数据结构,List,Set
    无线传感器网络
    vivado时序分析-2时序分析关键概念
  • 原文地址:https://blog.csdn.net/m0_71272694/article/details/127865378