理论部分参考:李宏毅机器学习——对抗生成网络(GAN)_iwill323的博客-CSDN博客
目录
AFD (Anime face detection) rate
1. Input: 随机数,输入的维度是(batch size, 特征数)
2. Output: 动漫人物脸
3. Implementation requirement: DCGAN & WGAN & WGAN-GP
4. Target:产生1000动漫人物脸

数据来自Crypko网站,有71,314个图像。可以从李宏毅2022机器学习HW6解析_机器学习手艺人的博客-CSDN博客获取数据
将真假图片送入另一个模型,产生对应的特征,计算真假特征的距离
1. To detect how many anime faces in your submission
2. The higher, the better
- # import module
- import os
- import glob
- import random
- from datetime import datetime
-
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torchvision
- import torchvision.transforms as transforms
- from torch import optim
- from torch.utils.data import Dataset, DataLoader
- from torch import autograd
- from torch.autograd import Variable
-
- import matplotlib.pyplot as plt
- import numpy as np
- from PIL import Image
- import logging
- from tqdm import tqdm
-
- # seed setting
- def same_seeds(seed):
- # Python built-in random module
- random.seed(seed)
- # Numpy
- np.random.seed(seed)
- # Torch
- torch.manual_seed(seed)
- if torch.cuda.is_available():
- torch.cuda.manual_seed(seed)
- torch.cuda.manual_seed_all(seed)
- torch.backends.cudnn.benchmark = False
- torch.backends.cudnn.deterministic = True
-
- same_seeds(2022)
- workspace_dir = '../input'