写在前面:
1. 本文中提到的“股票策略校验工具”的具体使用操作请查看该博文;
2. 文中知识内容来自书籍《同花顺炒股软件从入门到精通》
3. 本系列文章是用来学习技法,文中所得内容都仅仅只是作为演示功能使用
目录
所谓“身抱多线”是指股价跌到低位后,出现一条较长实体的K线,将前面两条以上的K线包裹起来。该形态预示着做空动能释放完毕,是非常可靠的见底讯号。

出现“身抱多线”的形态后,股票投资者需要遵循以下操作原则。
1)“身抱多线”的形态如果出现在股价暴跌后的底部低位区域为买入信号。
2)“身抱多线”的形态如果出现在股票拉升的初期和中期也是很强的买入信号。
3)“身抱多线”的形态如果出现在高位或下降通道中则不宜参与。
“身抱多线”具有两种形态:一是大阳线包裹前面的多条小K线,二是大阴线包裹前面的多条小K线。两种形态的性质是一样的,均是蓄势待升的信号,可积极关注。
- def excute_strategy(base_data,data_dir):
- '''
- 买入口诀 - 身抱多线,好景出现
- 解析:
- 1. 出现一条较长实体的K线,将前面两条以上的K线包裹起来
- 自定义:
- 1. 两条以上 =》检验三条
- 2. 买入点 =》五阳后一个交易日收盘价
- 3. 胜 =》 买入后第三日收盘价涨跌幅,正为胜
- 只计算最近两年的数据
- :param base_data:股票代码与股票简称 键值对
- :param data_dir:股票日数据文件所在目录
- :return:
- '''
- import pandas as pd
- import numpy as np
- import talib,os
- from datetime import datetime
- from dateutil.relativedelta import relativedelta
-
- def res_pre_two_year_first_day():
- pre_year_day = (datetime.now() - relativedelta(years=2)).strftime('%Y-%m-%d')
- return pre_year_day
- caculate_start_date_str = res_pre_two_year_first_day()
-
- dailydata_file_list = os.listdir(data_dir)
-
- total_count = 0
- total_win = 0
- check_count = 0
- list_list = []
- detail_map = {}
- for item in dailydata_file_list:
- item_arr = item.split('.')
- ticker = item_arr[0]
- secName = base_data[ticker]
- file_path = data_dir + item
- df = pd.read_csv(file_path,encoding='utf-8')
- # 删除停牌的数据
- df = df.loc[df['openPrice'] > 0].copy()
- df['o_date'] = df['tradeDate']
- df['o_date'] = pd.to_datetime(df['o_date'])
- df = df.loc[df['o_date'] >= caculate_start_date_str].copy()
- # 保存未复权收盘价数据
- df['close'] = df['closePrice']
- # 计算前复权数据
- df['openPrice'] = df['openPrice'] * df['accumAdjFactor']
- df['closePrice'] = df['closePrice'] * df['accumAdjFactor']
- df['highestPrice'] = df['highestPrice'] * df['accumAdjFactor']
- df['lowestPrice'] = df['lowestPrice'] * df['accumAdjFactor']
-
- if len(df)<=0:
- continue
-
- # 开始计算
- df.reset_index(inplace=True)
- df['i_row'] = [i for i in range(len(df))]
- df['up_val'] = 0
- df.loc[df['closePrice']>=df['openPrice'],'up_val'] = df['closePrice']
- df.loc[df['closePrice']
'openPrice'],'up_val'] = df['openPrice'] - df['down_val'] = 0
- df.loc[df['closePrice']
'openPrice'],'down_val'] = df['closePrice'] - df.loc[df['closePrice']>=df['openPrice'],'down_val'] = df['openPrice']
-
- df['target_yeah'] = 0
- df.loc[(df['up_val']>=df['up_val'].shift(1)) & (df['up_val']>=df['up_val'].shift(2)) & (df['up_val']>=df['up_val'].shift(3)) & (df['down_val']<=df['down_val'].shift(1)) & (df['down_val']<=df['down_val'].shift(2)) & (df['down_val']<=df['down_val'].shift(3)),'target_yeah'] = 1
-
- df['three_chg'] = round(((df['close'].shift(-3) - df['close']) / df['close']) * 100, 4)
- df['three_after_close'] = df['close'].shift(-3)
-
- df_target = df.loc[df['target_yeah']==1].copy()
-
- node_count = 0
- node_win = 0
- duration_list = []
- table_list = []
- i_row_list = df_target['i_row'].values.tolist()
- for i,row0 in enumerate(i_row_list):
- row = row0 + 1
- if row >= len(df):
- continue
- date_str = df.iloc[row]['tradeDate']
- cur_close = df.iloc[row]['close']
- three_after_close = df.iloc[row]['three_after_close']
- three_chg = df.iloc[row]['three_chg']
-
- table_list.append([
- i,date_str,cur_close,three_after_close,three_chg
- ])
- duration_list.append([row-4,row+3])
- node_count += 1
- if three_chg>0:
- node_win +=1
- pass
-
- list_list.append({
- 'ticker':ticker,
- 'secName':secName,
- 'count':node_count,
- 'win':0 if node_count<=0 else round((node_win/node_count)*100,2)
- })
- detail_map[ticker] = {
- 'table_list': table_list,
- 'duration_list': duration_list
- }
-
- total_count += node_count
- total_win += node_win
- check_count += 1
- pass
- df = pd.DataFrame(list_list)
-
- results_data = {
- 'check_count':check_count,
- 'total_count':total_count,
- 'total_win':0 if total_count<=0 else round((total_win/total_count)*100,2),
- 'start_date_str':caculate_start_date_str,
- 'df':df,
- 'detail_map':detail_map
- }
- return results_data

本文校验的数据是随机抽取的81个股票