• 策略验证_买入口诀_身抱多线好景出现


    写在前面:
    1. 本文中提到的“股票策略校验工具”的具体使用操作请查看该博文
    2. 文中知识内容来自书籍《同花顺炒股软件从入门到精通》
    3. 本系列文章是用来学习技法,文中所得内容都仅仅只是作为演示功能使用

    目录

    解说

    策略代码

    结果


    解说

            所谓“身抱多线”是指股价跌到低位后,出现一条较长实体的K线,将前面两条以上的K线包裹起来。该形态预示着做空动能释放完毕,是非常可靠的见底讯号。

            出现“身抱多线”的形态后,股票投资者需要遵循以下操作原则。

            1)“身抱多线”的形态如果出现在股价暴跌后的底部低位区域为买入信号。

            2)“身抱多线”的形态如果出现在股票拉升的初期和中期也是很强的买入信号。

            3)“身抱多线”的形态如果出现在高位或下降通道中则不宜参与。

            “身抱多线”具有两种形态:一是大阳线包裹前面的多条小K线,二是大阴线包裹前面的多条小K线。两种形态的性质是一样的,均是蓄势待升的信号,可积极关注。

    策略代码

    1. def excute_strategy(base_data,data_dir):
    2. '''
    3. 买入口诀 - 身抱多线,好景出现
    4. 解析:
    5. 1. 出现一条较长实体的K线,将前面两条以上的K线包裹起来
    6. 自定义:
    7. 1. 两条以上 =》检验三条
    8. 2. 买入点 =》五阳后一个交易日收盘价
    9. 3. 胜 =》 买入后第三日收盘价涨跌幅,正为胜
    10. 只计算最近两年的数据
    11. :param base_data:股票代码与股票简称 键值对
    12. :param data_dir:股票日数据文件所在目录
    13. :return:
    14. '''
    15. import pandas as pd
    16. import numpy as np
    17. import talib,os
    18. from datetime import datetime
    19. from dateutil.relativedelta import relativedelta
    20. def res_pre_two_year_first_day():
    21. pre_year_day = (datetime.now() - relativedelta(years=2)).strftime('%Y-%m-%d')
    22. return pre_year_day
    23. caculate_start_date_str = res_pre_two_year_first_day()
    24. dailydata_file_list = os.listdir(data_dir)
    25. total_count = 0
    26. total_win = 0
    27. check_count = 0
    28. list_list = []
    29. detail_map = {}
    30. for item in dailydata_file_list:
    31. item_arr = item.split('.')
    32. ticker = item_arr[0]
    33. secName = base_data[ticker]
    34. file_path = data_dir + item
    35. df = pd.read_csv(file_path,encoding='utf-8')
    36. # 删除停牌的数据
    37. df = df.loc[df['openPrice'] > 0].copy()
    38. df['o_date'] = df['tradeDate']
    39. df['o_date'] = pd.to_datetime(df['o_date'])
    40. df = df.loc[df['o_date'] >= caculate_start_date_str].copy()
    41. # 保存未复权收盘价数据
    42. df['close'] = df['closePrice']
    43. # 计算前复权数据
    44. df['openPrice'] = df['openPrice'] * df['accumAdjFactor']
    45. df['closePrice'] = df['closePrice'] * df['accumAdjFactor']
    46. df['highestPrice'] = df['highestPrice'] * df['accumAdjFactor']
    47. df['lowestPrice'] = df['lowestPrice'] * df['accumAdjFactor']
    48. if len(df)<=0:
    49. continue
    50. # 开始计算
    51. df.reset_index(inplace=True)
    52. df['i_row'] = [i for i in range(len(df))]
    53. df['up_val'] = 0
    54. df.loc[df['closePrice']>=df['openPrice'],'up_val'] = df['closePrice']
    55. df.loc[df['closePrice']'openPrice'],'up_val'] = df['openPrice']
    56. df['down_val'] = 0
    57. df.loc[df['closePrice']'openPrice'],'down_val'] = df['closePrice']
    58. df.loc[df['closePrice']>=df['openPrice'],'down_val'] = df['openPrice']
    59. df['target_yeah'] = 0
    60. df.loc[(df['up_val']>=df['up_val'].shift(1)) & (df['up_val']>=df['up_val'].shift(2)) & (df['up_val']>=df['up_val'].shift(3)) & (df['down_val']<=df['down_val'].shift(1)) & (df['down_val']<=df['down_val'].shift(2)) & (df['down_val']<=df['down_val'].shift(3)),'target_yeah'] = 1
    61. df['three_chg'] = round(((df['close'].shift(-3) - df['close']) / df['close']) * 100, 4)
    62. df['three_after_close'] = df['close'].shift(-3)
    63. df_target = df.loc[df['target_yeah']==1].copy()
    64. node_count = 0
    65. node_win = 0
    66. duration_list = []
    67. table_list = []
    68. i_row_list = df_target['i_row'].values.tolist()
    69. for i,row0 in enumerate(i_row_list):
    70. row = row0 + 1
    71. if row >= len(df):
    72. continue
    73. date_str = df.iloc[row]['tradeDate']
    74. cur_close = df.iloc[row]['close']
    75. three_after_close = df.iloc[row]['three_after_close']
    76. three_chg = df.iloc[row]['three_chg']
    77. table_list.append([
    78. i,date_str,cur_close,three_after_close,three_chg
    79. ])
    80. duration_list.append([row-4,row+3])
    81. node_count += 1
    82. if three_chg>0:
    83. node_win +=1
    84. pass
    85. list_list.append({
    86. 'ticker':ticker,
    87. 'secName':secName,
    88. 'count':node_count,
    89. 'win':0 if node_count<=0 else round((node_win/node_count)*100,2)
    90. })
    91. detail_map[ticker] = {
    92. 'table_list': table_list,
    93. 'duration_list': duration_list
    94. }
    95. total_count += node_count
    96. total_win += node_win
    97. check_count += 1
    98. pass
    99. df = pd.DataFrame(list_list)
    100. results_data = {
    101. 'check_count':check_count,
    102. 'total_count':total_count,
    103. 'total_win':0 if total_count<=0 else round((total_win/total_count)*100,2),
    104. 'start_date_str':caculate_start_date_str,
    105. 'df':df,
    106. 'detail_map':detail_map
    107. }
    108. return results_data

    结果

     本文校验的数据是随机抽取的81个股票

  • 相关阅读:
    tp5微信公众号开发,申请公众号配置token验证
    Argo CD快速入门教程(gitee+argo+k8s)
    Openssl 1.1.x android编译
    虹科分享 | 终端安全防护 | 网络安全术语列表(上篇)
    面试(五)
    面试官:Go 有哪些方式安全读写共享变量
    Android网络请求(4) 网络请求框架Volley
    浅谈非线性回归(non-linear regression)
    ue4c++【基础知识】
    Centos - DHCP 服务器搭建
  • 原文地址:https://blog.csdn.net/m0_37967652/article/details/127911533