1020 Tree Traversals
分数 25
作者 CHEN, Yue
单位 浙江大学
Suppose that all the keys in a binary tree are distinct positive integers. Given the postorder and inorder traversal sequences, you are supposed to output the level order traversal sequence of the corresponding binary tree.
Each input file contains one test case. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the postorder sequence and the third line gives the inorder sequence. All the numbers in a line are separated by a space.
For each test case, print in one line the level order traversal sequence of the corresponding binary tree. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.
- 7
- 2 3 1 5 7 6 4
- 1 2 3 4 5 6 7
4 1 6 3 5 7 2
记得一定要为指针分配空间,否则会出现段错误,谨记!
详细解释请前往另一篇博客:
给定中序遍历和另外一种遍历方法确定一棵二叉树_疯疯癫癫才自由的博客-CSDN博客_怎么通过中序遍历和后序遍历确定一棵树
- #include <iostream>
- #include <cstring>
- #include <algorithm>
- #include <queue>
-
- using namespace std;
-
- typedef struct TNode* Bin;
-
- struct TNode
- {
- int data;
- Bin l,r;
- };
-
- const int N = 30;
- int beh[N], mid[N];
- int flag = 1;
-
- Bin get_tree(int behL, int behR, int midL, int midR)
- {
- if(behL > behR) //递归边界
- return NULL;
-
- //记得一定要为指针分配空间,否则会出现SF错误,谨记!
- Bin u = new TNode;
-
- int v = beh[behR];
- int k = 0;
- for(int i=midL; i<=midR; ++i)
- if(mid[i] == v)
- {
- k = i;
- break;
- }
-
- int lenL = k - midL; //左子树的节点数目
- u->data = v;
-
- //递归左边界
- u -> l = get_tree(behL, behL+lenL-1, midL, k-1);
-
- //递归右边界
- u -> r = get_tree(behL+lenL, behR-1, k+1, midR);
-
- return u;
- }
-
- void level_traver(Bin root)
- {
- queue<Bin> q;
- q.push(root);
-
- while(q.size())
- {
- Bin top = q.front();
- q.pop();
- if(flag)
- flag = 0;
- else
- cout << ' ';
- cout << top->data;
- if(top -> l)
- q.push(top -> l);
- if(top -> r)
- q.push(top -> r);
- }
- }
-
- int main()
- {
- int n;
- cin >> n;
-
- for(int i=0; i<n; ++i)
- cin >> beh[i];
- for(int i=0; i<n; ++i)
- cin >> mid[i];
-
- Bin root = NULL;
- root = get_tree(0, n-1, 0, n-1);
-
- level_traver(root);
- return 0;
- }