• 基于最小二乘支持向量机(LS-SVM)进行分类、函数估计、时间序列预测和无监督学习(Matlab代码实现)


     📝个人主页:研学社的博客 

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

    🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

    ⛳️座右铭:行百里者,半于九十。

    目录

    💥1 概述

    📚2 运行结果

    🎉3 参考文献

    🌈4 Matlab代码实现

    💥1 概述

    支持向量机(SVM)以结构风险最小化为基本原则,可以实现风险的最小化控制,最小二乘支持向量机(LS-SVM)在继承SVM优点的基础上进行了相应的改进,通过平方项优化指标,以等式约束条件替换原来的不等式约束条件,可以加快求解速度。应用LS-SVM算法,可以有效处理非线性问题,可以选择应用其中的 RBF 核函数 K
     

           K\left(x, x_{\mathrm{i}}\right)=\exp \left(-\frac{\left\|x-x_{\mathrm{i}}\right\|^{2}}{2 \sigma^{2}}\right)

    式中: x 为输入向量, x i 为第 i 个核函数的中心; σ 为核宽度,控制着核函数距中心点的宽度。

    📚2 运行结果

     

     

    ​ 

     

    ​ 

    ​ 

     

     

     部分代码:

    X=(-10:0.1:10)';
    Y = cos(X) + cos(2*X) + 0.1.*rand(length(X),1);

    Xtrain = X(1:2:length(X));
    Ytrain = Y(1:2:length(Y));
    Xtest = X(2:2:length(X));
    Ytest = Y(2:2:length(Y));

    %%
    sigs = [0.1 0.7 10 0.1 0.7 10 0.1 0.7 10]; gammas=[1 1 1 10 10 10 100 100 100];
    for i=1:length(gammas)
        gam = gammas(i);
        sig2 = sigs(i);

        mdl_in = {Xtrain,Ytrain,'f',gam,sig2,'RBF_kernel'};
        [alpha,b] = trainlssvm(mdl_in);
        subplot(3, 3, i);
        plotlssvm(mdl_in, {alpha,b});

        YtestEst = simlssvm(mdl_in, {alpha,b},Xtest);
        plot(Xtest,Ytest,'.');
        hold on;
        plot(Xtest,YtestEst,'r+');
        %legend('Ytest','YtestEst');
        title(['sig2=' num2str(sig2) ',gam=' num2str(gam)]);
        hold off
    end


    %%
    cost_crossval = crossvalidate({Xtrain,Ytrain,'f',gam,sig2},10);
    cost_loo = leaveoneout({Xtrain,Ytrain,'f',gam,sig2});

    optFun = 'gridsearch';
    globalOptFun = 'csa';
    mdl_in = {Xtrain,Ytrain,'f',[],[],'RBF_kernel',globalOptFun};
    [gam,sig2,cost] = tunelssvm(mdl_in, optFun,'crossvalidatelssvm',{10,'mse'})

    % mdl_in = {Xtrain,Ytrain,'f',gam,sig2,'RBF_kernel'};
    % [alpha,b] = trainlssvm(mdl_in);

    % plotlssvm(mdl_in, {alpha,b});

    % YtestEst = simlssvm(mdl_in, {alpha,b},Xtest);
    % plot(Xtest,Ytest,'.');
    % hold on;
    % plot(Xtest,YtestEst,'r+');
    % legend('Ytest','YtestEst');

    %%
    optFun = 'gridsearch';
    globalOptFun = 'csa';
    mdl_in = {Xtrain,Ytrain,'f',[],[],'RBF_kernel',globalOptFun};
    tic
    for i=1:20
        [gam_csa_grid(i),sig2_csa_grid(i),cost_csa_grid(i)] = tunelssvm(mdl_in, optFun,'crossvalidatelssvm',{10,'mse'});
    end
    t1=toc;
    t1=t1/20;

    [c,idx]=min(cost_csa_grid); a=gam_csa_grid(idx);
    fprintf('min=%0.5f \nmean=%0.5f \nvar=%0.5f \n', c, mean(cost_csa_grid), var(cost_csa_grid))
    b=sig2_csa_grid(idx);
    fprintf('t=%0.5f s \ngam=%0.5f \nsig2=%0.5f \n', mean(t1), a, b)

    %%
    optFun = 'simplex';
    globalOptFun = 'csa';
    mdl_in = {Xtrain,Ytrain,'f',[],[],'RBF_kernel',globalOptFun};
    tic
    for i=1:20
        [gam_csa_simplex(i),sig2_csa_simplex(i),cost_csa_simplex(i)] = tunelssvm(mdl_in, optFun,'crossvalidatelssvm',{10,'mse'});
    end
    t1=toc;
    t1=t1/20;

    [c,idx]=min(cost_csa_simplex); a=gam_csa_simplex(idx); b=sig2_csa_simplex(idx);
    fprintf('min=%0.5f \nmean=%0.5f \nvar=%0.5f \n', c, mean(cost_csa_simplex), var(cost_csa_simplex))
    fprintf('t=%0.5f s \ngam=%0.5f \nsig2=%0.5f \n', mean(t1), a, b)
    %%
    optFun = 'gridsearch';
    globalOptFun = 'ds';
    mdl_in = {Xtrain,Ytrain,'f',[],[],'RBF_kernel',globalOptFun};
    tic
    for i=1:20
        [gam_ds_grid(i),sig2_ds_grid(i),cost_ds_grid(i)] = tunelssvm(mdl_in, optFun,'crossvalidatelssvm',{10,'mse'});
    end
    t1=toc;
    t1=t1/20;

    [c,idx]=min(cost_ds_grid); a=gam_ds_grid(idx); b=sig2_ds_grid(idx);
    fprintf('min=%0.5f \nmean=%0.5f \nvar=%0.5f \n', c, mean(cost_ds_grid), var(cost_ds_grid))
    fprintf('t=%0.5f s \ngam=%0.5f \nsig2=%0.5f \n', mean(t1), a, b)

    %%
    optFun = 'simplex';
    globalOptFun = 'ds';
    mdl_in = {Xtrain,Ytrain,'f',[],[],'RBF_kernel',globalOptFun};
    tic
    for i=1:20
        [gam_ds_simplex(i),sig2_ds_simplex(i),cost_ds_simplex(i)] = tunelssvm(mdl_in, optFun,'crossvalidatelssvm',{10,'mse'});
    end
    t1=toc;
    t1=t1/20;

    [c,idx]=min(cost_ds_simplex); a=gam_ds_simplex(idx); b=sig2_ds_simplex(idx);
    fprintf('min=%0.5f \nmean=%0.5f \nvar=%0.5f \n', c, mean(cost_ds_simplex), var(cost_ds_simplex))
    fprintf('t=%0.5f s \ngam=%0.5f \nsig2=%0.5f \n', mean(t1), a, b)

    %%
    sig2 = 0.5; gam = 10;
    criterion_L1 = bay_lssvm({Xtrain,Ytrain,'f',gam,sig2},1)
    criterion_L2 = bay_lssvm({Xtrain,Ytrain,'f',gam,sig2},2)
    criterion_L3 = bay_lssvm({Xtrain,Ytrain,'f',gam,sig2},3)


    %%
    gam=100; sig2=0.05;
    [~,alpha,b] = bay_optimize({Xtrain,Ytrain,'f',gam,sig2}, 1);
    [~,gam] = bay_optimize({Xtrain,Ytrain,'f',gam,sig2},2);
    [~,sig2] = bay_optimize({Xtrain,Ytrain,'f',gam,sig2},3);
    sig2e = bay_errorbar({Xtrain,Ytrain,'f',gam,sig2},'figure');

    %%
    load iris;
    gam=5; sig2=0.75; 
    cnt=1;
    for gam=[1 10 100]
        for sig2=[0.2 1 10]
            subplot(3,3,cnt);
            bay_modoutClass({X,Y,'c',gam,sig2},'figure');
            cnt=cnt+1;
        end
    end

    %%
    X = 10.*rand(100,3)-3;
    Y = cos(X(:,1)) + cos(2*(X(:,1))) +0.3.*randn(100,1);
    [selected, ranking, costs2] = bay_lssvmARD({X,Y,'class', 100, 0.1});

    %%
    X = (-10:0.2:10)';
    Y = cos(X) + cos(2*X) +0.1.*rand(size(X));
    out = [15 17 19];
    Y(out) = 0.7+0.3*rand(size(out));
    out = [41 44 46];
    Y(out) = 1.5+0.2*rand(size(out));

    mdl_in = {X, Y,'f', 100, 0.1,'RBF_kernel'};
    [alpha,b] = trainlssvm(mdl_in);
    plotlssvm(mdl_in, {alpha,b});
     

    🎉3 参考文献

    部分理论来源于网络,如有侵权请联系删除。

    [1]赵舵.基于天气类型聚类和LS-SVM的光伏出力预测方法[J].光源与照明,2022(6):82-84

    [2]教传艳.基于自适应LS-SVM的柴油机废气再循环冷却控制系统设计[J].计算机测量与控制,2022,30(2):124-128144

    🌈4 Matlab代码实现

  • 相关阅读:
    文件压缩:WinRAR设置默认压缩格式为.zip
    Linux系统编程 102 alarm函数
    基于Java协同算法实现的仿今日头条资讯网站设计
    力扣(LeetCode)123. 买卖股票的最佳时机 III(C++)
    使用 nuxt3 开发简约优雅的个人 blog
    jvm 内存区域划分-CSDN博客
    vue2和vue3详细区别
    力扣:100. 相同的树(Python3)
    大恒相机SDK开发
    【Python 实战】---- 使用【百度人像分割】实现一键批量抠图
  • 原文地址:https://blog.csdn.net/weixin_46039719/article/details/127836523