• Postgresql实验系列(4)SIMD提升线性搜索性能24.5%(附带PG SIMD完整用例)


    概要

    接上一篇《Postgresql引入SIMD指令集》

    PG引入SIMD执行集后具体有多大性能提升?本篇抽取PG的simd库,对比线性搜索场景的性能:

    测试场景(文章最后提供完整程序)

    构造一个存有14亿数字的数组

    	uint32 cnt = 1410065408;
    	uint32 *xids = (uint32 *) malloc(sizeof(uint32) * cnt);
    	for (int i = 0; i < cnt; i++)
    		xids[i] = rand();
    
    • 1
    • 2
    • 3
    • 4

    场景一:使用SIMD查询一个数字是否在数组中,重复10次

    // do 10 times!
    	for (int i = 0; i < 10; i++)
    		res = pg_lfind32(xid, xids, cnt);
    
    • 1
    • 2
    • 3

    场景二:直接遍历查询一个数字是否在数组中,重复10次

    	// do 10 times!
    	for (int i = 0; i < 10; i++)
    		for (int i = 0; i < cnt; i++)
    			if (xid == xids[i])
    				res = true;
    
    • 1
    • 2
    • 3
    • 4
    • 5

    性能差距(on AMD EPYC 7K62 48-C Processor)

    执行14亿数组查询,执行结果:

    在这里插入图片描述

    [mingjie@VM-130-23-centos ~/proj/simd][PGROOT99:9901]$ ./conftest 
    
    sample: 1804289383 846930886 1681692777...
    [use SIMD]find x among 1410065408 numbers: 27.480000 seconds
    [use no SIMD]find x among 1410065408 numbers:  34.220000 seconds
    
    • 1
    • 2
    • 3
    • 4
    • 5

    结果:

    • 场景一:(使用SIMD从14亿数字中查询一个数是否存在) * 10次
      • 时间 = 27.480000 秒
    • 场景二:(直接遍历14亿数字查询一个数是否存在) * 10次
      • 时间 = 34.220000 秒

    性能差距:SIMD在该场景有 24.5%的性能提升。


    测试程序 & 编译方法

    编译:

    gcc -o conftest -Wall -g -ggdb -O0 -g3 -gdwarf-2 -msse4.2 main.c

    main.c

    /***************************************************/
    #include 
    #include 
    #include 
    #include 
    #include 
    
    /***************************************************/
    #define Assert(condition) assert(condition)
    #define true	((bool) 1)
    #define false	((bool) 0)
    typedef unsigned char uint8;	/* == 8 bits */
    typedef unsigned short uint16;	/* == 16 bits */
    typedef unsigned int uint32;	/* == 32 bits */
    typedef unsigned char bool;
    typedef size_t Size;
    /***************************************************/
    // #define USE_ASSERT_CHECKING
    
    #include "simd.h"
    /***************************************************/
    
    /*
     * pg_lfind32
     *
     * Return true if there is an element in 'base' that equals 'key', otherwise
     * return false.
     */
    static inline bool
    pg_lfind32(uint32 key, uint32 *base, uint32 nelem)
    {
    	uint32		i = 0;
    
    #ifndef USE_NO_SIMD
    
    	/*
    	 * For better instruction-level parallelism, each loop iteration operates
    	 * on a block of four registers.  Testing for SSE2 has showed this is ~40%
    	 * faster than using a block of two registers.
    	 */
    	const Vector32 keys = vector32_broadcast(key);	/* load copies of key */
    	const uint32 nelem_per_vector = sizeof(Vector32) / sizeof(uint32);
    	const uint32 nelem_per_iteration = 4 * nelem_per_vector;
    
    	/* round down to multiple of elements per iteration */
    	const uint32 tail_idx = nelem & ~(nelem_per_iteration - 1);
    
    	for (i = 0; i < tail_idx; i += nelem_per_iteration)
    	{
    		Vector32	vals1,
    					vals2,
    					vals3,
    					vals4,
    					result1,
    					result2,
    					result3,
    					result4,
    					tmp1,
    					tmp2,
    					result;
    
    		/* load the next block into 4 registers */
    		vector32_load(&vals1, &base[i]);
    		vector32_load(&vals2, &base[i + nelem_per_vector]);
    		vector32_load(&vals3, &base[i + nelem_per_vector * 2]);
    		vector32_load(&vals4, &base[i + nelem_per_vector * 3]);
    
    		/* compare each value to the key */
    		result1 = vector32_eq(keys, vals1);
    		result2 = vector32_eq(keys, vals2);
    		result3 = vector32_eq(keys, vals3);
    		result4 = vector32_eq(keys, vals4);
    
    		/* combine the results into a single variable */
    		tmp1 = vector32_or(result1, result2);
    		tmp2 = vector32_or(result3, result4);
    		result = vector32_or(tmp1, tmp2);
    
    		/* see if there was a match */
    		if (vector32_is_highbit_set(result))
    		{
    			return true;
    		}
    	}
    #endif							/* ! USE_NO_SIMD */
    
    	/* Process the remaining elements one at a time. */
    	for (; i < nelem; i++)
    	{
    		if (key == base[i])
    			return true;
    	}
    
    	return false;
    }
    /***************************************************/
    
    int main()
    {
    	clock_t start, finish;
    	double  duration;
    
    	uint32 xid = 11;
    	uint32 cnt = 1410065408;
    	uint32 *xids = (uint32 *) malloc(sizeof(uint32) * cnt);
    	bool res = false;
    
    	for (int i = 0; i < cnt; i++)
    		xids[i] = rand();
    	printf("sample: %d %d %d...\n", xids[0], xids[1], xids[2]);
    
    	/***************************************************/
    	/* SIMD */
    	/***************************************************/
    
    	start = clock();
    	// do 10 times!
    	for (int i = 0; i < 10; i++)
    		res = pg_lfind32(xid, xids, cnt);
    	finish = clock();  
    	duration = (double)(finish - start) / CLOCKS_PER_SEC;
    	printf( "[use SIMD]find x among %d numbers: %f seconds\n", cnt, duration );
    
    	// printf("res: %d\n", res);
    	/***************************************************/
    	/* no SIMD */
    	/***************************************************/
    
    	start = clock();
    	// do 10 times!
    	for (int i = 0; i < 10; i++)
    		for (int i = 0; i < cnt; i++)
    			if (xid == xids[i])
    				res = true;
    	finish = clock();  
    	duration = (double)(finish - start) / CLOCKS_PER_SEC;
    	printf( "[use no SIMD]find x among %d numbers:  %f seconds\n", cnt, duration );
    
    	// printf("res: %d\n", res);
    	return res;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141

    simd.h(from postgresql15)

    /*-------------------------------------------------------------------------
     *
     * simd.h
     *	  Support for platform-specific vector operations.
     *
     * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
     * Portions Copyright (c) 1994, Regents of the University of California
     *
     * src/include/port/simd.h
     *
     * NOTES
     * - VectorN in this file refers to a register where the element operands
     * are N bits wide. The vector width is platform-specific, so users that care
     * about that will need to inspect "sizeof(VectorN)".
     *
     *-------------------------------------------------------------------------
     */
    #ifndef SIMD_H
    #define SIMD_H
    
    #if (defined(__x86_64__) || defined(_M_AMD64))
    /*
     * SSE2 instructions are part of the spec for the 64-bit x86 ISA. We assume
     * that compilers targeting this architecture understand SSE2 intrinsics.
     *
     * We use emmintrin.h rather than the comprehensive header immintrin.h in
     * order to exclude extensions beyond SSE2. This is because MSVC, at least,
     * will allow the use of intrinsics that haven't been enabled at compile
     * time.
     */
    #include 
    #define USE_SSE2
    typedef __m128i Vector8;
    typedef __m128i Vector32;
    
    #elif defined(__aarch64__) && defined(__ARM_NEON)
    /*
     * We use the Neon instructions if the compiler provides access to them (as
     * indicated by __ARM_NEON) and we are on aarch64.  While Neon support is
     * technically optional for aarch64, it appears that all available 64-bit
     * hardware does have it.  Neon exists in some 32-bit hardware too, but we
     * could not realistically use it there without a run-time check, which seems
     * not worth the trouble for now.
     */
    #include 
    #define USE_NEON
    typedef uint8x16_t Vector8;
    typedef uint32x4_t Vector32;
    
    #else
    /*
     * If no SIMD instructions are available, we can in some cases emulate vector
     * operations using bitwise operations on unsigned integers.  Note that many
     * of the functions in this file presently do not have non-SIMD
     * implementations.  In particular, none of the functions involving Vector32
     * are implemented without SIMD since it's likely not worthwhile to represent
     * two 32-bit integers using a uint64.
     */
    #define USE_NO_SIMD
    typedef uint64 Vector8;
    #endif
    
    /* load/store operations */
    static inline void vector8_load(Vector8 *v, const uint8 *s);
    #ifndef USE_NO_SIMD
    static inline void vector32_load(Vector32 *v, const uint32 *s);
    #endif
    
    /* assignment operations */
    static inline Vector8 vector8_broadcast(const uint8 c);
    #ifndef USE_NO_SIMD
    static inline Vector32 vector32_broadcast(const uint32 c);
    #endif
    
    /* element-wise comparisons to a scalar */
    static inline bool vector8_has(const Vector8 v, const uint8 c);
    static inline bool vector8_has_zero(const Vector8 v);
    static inline bool vector8_has_le(const Vector8 v, const uint8 c);
    static inline bool vector8_is_highbit_set(const Vector8 v);
    #ifndef USE_NO_SIMD
    static inline bool vector32_is_highbit_set(const Vector32 v);
    #endif
    
    /* arithmetic operations */
    static inline Vector8 vector8_or(const Vector8 v1, const Vector8 v2);
    #ifndef USE_NO_SIMD
    static inline Vector32 vector32_or(const Vector32 v1, const Vector32 v2);
    static inline Vector8 vector8_ssub(const Vector8 v1, const Vector8 v2);
    #endif
    
    /*
     * comparisons between vectors
     *
     * Note: These return a vector rather than boolean, which is why we don't
     * have non-SIMD implementations.
     */
    #ifndef USE_NO_SIMD
    static inline Vector8 vector8_eq(const Vector8 v1, const Vector8 v2);
    static inline Vector32 vector32_eq(const Vector32 v1, const Vector32 v2);
    #endif
    
    /*
     * Load a chunk of memory into the given vector.
     */
    static inline void
    vector8_load(Vector8 *v, const uint8 *s)
    {
    #if defined(USE_SSE2)
    	*v = _mm_loadu_si128((const __m128i *) s);
    #elif defined(USE_NEON)
    	*v = vld1q_u8(s);
    #else
    	memcpy(v, s, sizeof(Vector8));
    #endif
    }
    
    #ifndef USE_NO_SIMD
    static inline void
    vector32_load(Vector32 *v, const uint32 *s)
    {
    #ifdef USE_SSE2
    	*v = _mm_loadu_si128((const __m128i *) s);
    #elif defined(USE_NEON)
    	*v = vld1q_u32(s);
    #endif
    }
    #endif							/* ! USE_NO_SIMD */
    
    /*
     * Create a vector with all elements set to the same value.
     */
    static inline Vector8
    vector8_broadcast(const uint8 c)
    {
    #if defined(USE_SSE2)
    	return _mm_set1_epi8(c);
    #elif defined(USE_NEON)
    	return vdupq_n_u8(c);
    #else
    	return ~UINT64CONST(0) / 0xFF * c;
    #endif
    }
    
    #ifndef USE_NO_SIMD
    static inline Vector32
    vector32_broadcast(const uint32 c)
    {
    #ifdef USE_SSE2
    	return _mm_set1_epi32(c);
    #elif defined(USE_NEON)
    	return vdupq_n_u32(c);
    #endif
    }
    #endif							/* ! USE_NO_SIMD */
    
    /*
     * Return true if any elements in the vector are equal to the given scalar.
     */
    static inline bool
    vector8_has(const Vector8 v, const uint8 c)
    {
    	bool		result;
    
    	/* pre-compute the result for assert checking */
    #ifdef USE_ASSERT_CHECKING
    	bool		assert_result = false;
    
    	for (Size i = 0; i < sizeof(Vector8); i++)
    	{
    		if (((const uint8 *) &v)[i] == c)
    		{
    			assert_result = true;
    			break;
    		}
    	}
    #endif							/* USE_ASSERT_CHECKING */
    
    #if defined(USE_NO_SIMD)
    	/* any bytes in v equal to c will evaluate to zero via XOR */
    	result = vector8_has_zero(v ^ vector8_broadcast(c));
    #else
    	result = vector8_is_highbit_set(vector8_eq(v, vector8_broadcast(c)));
    #endif
    
    	return result;
    }
    
    /*
     * Convenience function equivalent to vector8_has(v, 0)
     */
    static inline bool
    vector8_has_zero(const Vector8 v)
    {
    #if defined(USE_NO_SIMD)
    	/*
    	 * We cannot call vector8_has() here, because that would lead to a
    	 * circular definition.
    	 */
    	return vector8_has_le(v, 0);
    #else
    	return vector8_has(v, 0);
    #endif
    }
    
    /*
     * Return true if any elements in the vector are less than or equal to the
     * given scalar.
     */
    static inline bool
    vector8_has_le(const Vector8 v, const uint8 c)
    {
    	bool		result = false;
    
    	/* pre-compute the result for assert checking */
    #ifdef USE_ASSERT_CHECKING
    	bool		assert_result = false;
    
    	for (Size i = 0; i < sizeof(Vector8); i++)
    	{
    		if (((const uint8 *) &v)[i] <= c)
    		{
    			assert_result = true;
    			break;
    		}
    	}
    #endif							/* USE_ASSERT_CHECKING */
    
    #if defined(USE_NO_SIMD)
    
    	/*
    	 * To find bytes <= c, we can use bitwise operations to find bytes < c+1,
    	 * but it only works if c+1 <= 128 and if the highest bit in v is not set.
    	 * Adapted from
    	 * https://graphics.stanford.edu/~seander/bithacks.html#HasLessInWord
    	 */
    	if ((int64) v >= 0 && c < 0x80)
    		result = (v - vector8_broadcast(c + 1)) & ~v & vector8_broadcast(0x80);
    	else
    	{
    		/* one byte at a time */
    		for (Size i = 0; i < sizeof(Vector8); i++)
    		{
    			if (((const uint8 *) &v)[i] <= c)
    			{
    				result = true;
    				break;
    			}
    		}
    	}
    #else
    
    	/*
    	 * Use saturating subtraction to find bytes <= c, which will present as
    	 * NUL bytes.  This approach is a workaround for the lack of unsigned
    	 * comparison instructions on some architectures.
    	 */
    	result = vector8_has_zero(vector8_ssub(v, vector8_broadcast(c)));
    #endif
    
    	return result;
    }
    
    /*
     * Return true if the high bit of any element is set
     */
    static inline bool
    vector8_is_highbit_set(const Vector8 v)
    {
    #ifdef USE_SSE2
    	return _mm_movemask_epi8(v) != 0;
    #elif defined(USE_NEON)
    	return vmaxvq_u8(v) > 0x7F;
    #else
    	return v & vector8_broadcast(0x80);
    #endif
    }
    
    /*
     * Exactly like vector8_is_highbit_set except for the input type, so it
     * looks at each byte separately.
     *
     * XXX x86 uses the same underlying type for 8-bit, 16-bit, and 32-bit
     * integer elements, but Arm does not, hence the need for a separate
     * function. We could instead adopt the behavior of Arm's vmaxvq_u32(), i.e.
     * check each 32-bit element, but that would require an additional mask
     * operation on x86.
     */
    #ifndef USE_NO_SIMD
    static inline bool
    vector32_is_highbit_set(const Vector32 v)
    {
    #if defined(USE_NEON)
    	return vector8_is_highbit_set((Vector8) v);
    #else
    	return vector8_is_highbit_set(v);
    #endif
    }
    #endif							/* ! USE_NO_SIMD */
    
    /*
     * Return the bitwise OR of the inputs
     */
    static inline Vector8
    vector8_or(const Vector8 v1, const Vector8 v2)
    {
    #ifdef USE_SSE2
    	return _mm_or_si128(v1, v2);
    #elif defined(USE_NEON)
    	return vorrq_u8(v1, v2);
    #else
    	return v1 | v2;
    #endif
    }
    
    #ifndef USE_NO_SIMD
    static inline Vector32
    vector32_or(const Vector32 v1, const Vector32 v2)
    {
    #ifdef USE_SSE2
    	return _mm_or_si128(v1, v2);
    #elif defined(USE_NEON)
    	return vorrq_u32(v1, v2);
    #endif
    }
    #endif							/* ! USE_NO_SIMD */
    
    /*
     * Return the result of subtracting the respective elements of the input
     * vectors using saturation (i.e., if the operation would yield a value less
     * than zero, zero is returned instead).  For more information on saturation
     * arithmetic, see https://en.wikipedia.org/wiki/Saturation_arithmetic
     */
    #ifndef USE_NO_SIMD
    static inline Vector8
    vector8_ssub(const Vector8 v1, const Vector8 v2)
    {
    #ifdef USE_SSE2
    	return _mm_subs_epu8(v1, v2);
    #elif defined(USE_NEON)
    	return vqsubq_u8(v1, v2);
    #endif
    }
    #endif							/* ! USE_NO_SIMD */
    
    /*
     * Return a vector with all bits set in each lane where the the corresponding
     * lanes in the inputs are equal.
     */
    #ifndef USE_NO_SIMD
    static inline Vector8
    vector8_eq(const Vector8 v1, const Vector8 v2)
    {
    #ifdef USE_SSE2
    	return _mm_cmpeq_epi8(v1, v2);
    #elif defined(USE_NEON)
    	return vceqq_u8(v1, v2);
    #endif
    }
    #endif							/* ! USE_NO_SIMD */
    
    #ifndef USE_NO_SIMD
    static inline Vector32
    vector32_eq(const Vector32 v1, const Vector32 v2)
    {
    #ifdef USE_SSE2
    	return _mm_cmpeq_epi32(v1, v2);
    #elif defined(USE_NEON)
    	return vceqq_u32(v1, v2);
    #endif
    }
    #endif							/* ! USE_NO_SIMD */
    
    #endif							/* SIMD_H */
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338
    • 339
    • 340
    • 341
    • 342
    • 343
    • 344
    • 345
    • 346
    • 347
    • 348
    • 349
    • 350
    • 351
    • 352
    • 353
    • 354
    • 355
    • 356
    • 357
    • 358
    • 359
    • 360
    • 361
    • 362
    • 363
    • 364
    • 365
    • 366
    • 367
    • 368
    • 369
    • 370
    • 371
    • 372
    • 373
    • 374
  • 相关阅读:
    【LeetCode-中等题】513. 找树左下角的值
    YOLOv5目标检测学习(5):源码解析之:推理部分dectet.py
    JAVA进阶学习书籍
    java的IO流-字符流
    冶金行业S2B2B商城交易系统:夯实企业资源聚合能力,提升管理水平
    macOS、Linux CentOS 、Docker安装部署canal-server(canal-deployer)服务
    Vue中如何封装组件,如何进行跨组件通信
    Leetcode周赛371补题(3 / 3)
    java的基础用法和常见错误
    一个示例学习C语言到汇编层面
  • 原文地址:https://blog.csdn.net/jackgo73/article/details/127871595