• LeetCode-剑指44-数字序列中某一位的数字


    在这里插入图片描述

    1、找规律

    我们通过找规律可以发现,当位数为 x x x时,其占用的位数为 x × 9 × 1 0 x − 1 x\times9\times10^{x-1} x×9×10x1。因此我们可以不断循环并增大位数 x x x直至 n − x < x × 9 × 1 0 x − 1 n-xnx<x×9×10x1,此时数字落在剩余的位数中。为了方便起见,我们去除0的情况即 i n d e x = n − 1 index = n - 1 index=n1。我们首先获得当前位数对应数字的起始值,即 s t a r t = ( i n t ) p o w ( 10 , d − 1 ) start = (int) pow(10, d - 1) start=(int)pow(10,d1)。而后我们计算我们对应的数字为 n u m = s t a r t + i n d e x / d num = start + index / d num=start+index/d。我们确定我们需要的数字在当前数字中的第 i n d e x % d index \% d index%d位。最终我们获得数字为 d i g i t = ( n u m / ( i n t ) ( p o w ( 10 , d − d i g i t I n d e x − 1 ) ) ) % 10 digit = (num / (int) (pow(10, d - digitIndex - 1))) \% 10 digit=(num/(int)(pow(10,ddigitIndex1)))%10

    class Solution {
    public:
        int findNthDigit(int n) {
            int d = 1, count = 9;
            while (n > (long) d * count) {
                n -= d * count;
                d++;
                count *= 10;      
            }
            int index = n - 1;
            int start = (int) pow(10, d - 1);
            int num = start + index / d;
            int digitIndex = index % d;
            int digit = (num / (int) (pow(10, d - digitIndex - 1))) % 10;
            return digit;
        }
    };
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    2、二分查找

    具体思路同上,区别在于我们可以通过范围确定位数不超过9,从而使用二分查找来直接进行查询。

    class Solution {
    public:
        int findNthDigit(int n) {
            int low = 1, high = 9;
            while (low < high) {
                int mid = (high - low) / 2 + low;
                if (totalDigits(mid) < n) {
                    low = mid + 1;
                } else {
                    high = mid;
                }
            }
            int d = low;
            int prevDigits = totalDigits(d - 1);
            int index = n - prevDigits - 1;
            int start = (int) pow(10, d - 1);
            int num = start + index / d;
            int digitIndex = index % d;
            int digit = (num / (int) (pow(10, d - digitIndex - 1))) % 10;
            return digit;
        }
    
        int totalDigits(int length) {
            int digits = 0;
            int curLength = 1, curCount = 9;
            while (curLength <= length) {
                digits += curLength * curCount;
                curLength++;
                curCount *= 10;
            }
            return digits;
        }
    };
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
  • 相关阅读:
    Shader的组成部分Fallback
    MySQL常见问题汇总
    CSR/SSR以及同构渲染的区别
    Android深度性能优化-更底层、全局、多维度优化
    FSK解调技术的FPGA实现
    经典算法-----汉诺塔问题
    解决websocket不定时出现1005错误
    docker Cgroup资源控制
    【毕业设计】深度学习试卷批改系统 - opencv python 机器视觉
    taro3 支付宝小程序 -- 授权手机号和用户信息
  • 原文地址:https://blog.csdn.net/weixin_43825194/article/details/127868622