• Flow Problem(最大流模板)


    Flow Problem

    Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 17963    Accepted Submission(s): 8464


     

    Problem Description

    Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.

    Input

    The first line of input contains an integer T, denoting the number of test cases.
    For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
    Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)

    Output

    For each test cases, you should output the maximum flow from source 1 to sink N.

    Sample Input

    2

    3 2

    1 2 1

    2 3 1

    3 3

    1 2 1

    2 3 1

    1 3 1

    Sample Output

    Case 1: 1

    Case 2: 2

    Author

    HyperHexagon

    Source

    HyperHexagon's Summer Gift (Original tasks)

    题意:n 个点 m 条有向边,给出 m 条边的 u,v ,cap 问求最大流,算是模板题

    练习了Dinic算法

      1 # include 
      2 using namespace std;
      3 # define eps 1e-8
      4 # define INF 0x3f3f3f3f
      5 # define pi  acos(-1.0)
      6 # define MXN  105
      7 # define MXM  1005
      8 
      9 struct Edge{
     10     int from, to, flow, cap;
     11 }edges[MXM*2];              //有向边数
     12 
     13 struct Dinic{
     14     int n, m, s ,t ,idx;    //点,边,源点,汇点,边数
     15     vector G[MXN];     //记录边
     16     int vis[MXN];           //BFS用
     17     int dis[MXN];           //层次
     18     int cur[MXN];           //考虑到哪条弧
     19 
     20     void Init(){
     21         idx=0;
     22         for (int i=1;i<=n;i++) G[i].clear();    //有附加点时要注意
     23     }
     24     
     25     void Addedge(int u,int v,int c){
     26         edges[idx++] = (Edge){u,v,0,c};
     27         edges[idx++] = (Edge){v,u,0,0};
     28         G[u].push_back(idx-2);
     29         G[v].push_back(idx-1);
     30     }
     31 
     32     int BFS()
     33     {
     34         memset(vis,0,sizeof(vis));
     35         queue Q;
     36         Q.push(s);
     37         dis[s] = 0, vis[s] = 1;
     38         while(!Q.empty())
     39         {
     40             int u = Q.front(); Q.pop();
     41             for (int i=0;i<(int)G[u].size();i++)
     42             {
     43                 Edge &e = edges[G[u][i]];
     44                 if (!vis[e.to]&&e.cap>e.flow)
     45                 {
     46                     dis[e.to]=dis[u]+1;
     47                     vis[e.to]=1;
     48                     Q.push(e.to);
     49                 }
     50             }
     51         }
     52         return vis[t];
     53     }
     54 
     55     int DFS(int x,int a)
     56     {
     57         if (x==t||a==0) return a;
     58         int flow = 0, temp;
     59         for (int &i=cur[x];i<(int)G[x].size();i++)
     60         {
     61             Edge &e = edges[G[x][i]];
     62             if (dis[e.to] == dis[x]+1 && (temp=DFS(e.to, min(a, e.cap-e.flow)))>0)
     63             {
     64                 e.flow+=temp;
     65                 edges[G[x][i]^1].flow-=temp;
     66                 flow += temp;
     67                 a-=temp;
     68                 if (a==0) break;
     69             }
     70         }
     71         return flow;
     72     }
     73 
     74     int MaxFlow(int s,int t)
     75     {
     76         this->s = s, this->t = t;
     77         int flow=0;
     78         while(BFS()){
     79             memset(cur,0,sizeof(cur));
     80             flow+=DFS(s,INF);
     81         }
     82         return flow;
     83     }
     84 }F;
     85 
     86 int main()
     87 {
     88     int T;
     89     scanf("%d",&T);
     90     for (int cas=1;cas<=T;cas++)
     91     {
     92         scanf("%d%d",&F.n,&F.m);
     93         F.Init();
     94         for (int i=1;i<=F.m;i++)
     95         {
     96             int u,v,c;
     97             scanf("%d%d%d",&u,&v,&c);
     98             F.Addedge(u,v,c);
     99         }
    100         printf("Case %d: %d\n",cas,F.MaxFlow(1,F.n));
    101     }
    102     return 0;
    103 }
  • 相关阅读:
    国内在线协作工具有哪些?
    数学建模--Topsis评价方法的Python实现
    iPhone 15秋季发布会召开,媒介盒子多家媒体持续报道
    Git 常用命令总结
    MySQL的缓冲池(buffer pool)及 LRU算法
    SpringBoot定时任务 - 什么是ElasticJob?如何集成ElasticJob实现分布式任务调度?
    研发医疗器械产品需要做的测试
    概率DP和期望DP
    【探花交友】阿里云OSS、百度人脸识别
    Vue3 路由优化,使页面初次渲染效率翻倍
  • 原文地址:https://blog.csdn.net/weixin_72426331/article/details/127783875