K-Means算法是一种聚类分析(cluster analysis)的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。
K-Means算法主要解决的问题如下图所示。我们可以看到,在图的左边有一些点,我们用肉眼可以看出来有四个点群,但是我们怎么通过计算机程序找出这几个点群来呢?于是就出现了我们的K-Means算法

这个算法其实很简单,如下图所示:

从上图中,我们可以看到,A,B,C,D,E是五个在图中点。而灰色的点是我们的种子点,也就是我们用来找点群的点。有两个种子点,所以K=2。
然后,K-Means的算法如下:
这个算法很简单,重点说一下“求点群中心的算法”:欧氏距离(Euclidean Distance):差的平方和的平方根

K是事先给定的,这个K值的选定是非常难以估计的。很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。(ISODATA算法通过类的自动合并和分裂,得到较为合理的类型数目K)
K-Means算法需要用初始随机种子点来搞,这个随机种子点太重要,不同的随机种子点会有得到完全不同的结果。(K-Means++算法可以用来解决这个问题,其可以有效地选择初始点)
- import numpy as np
- import pandas as pd
- import matplotlib.pyplot as plt
- %matplotlib inline
导包,使用make_blobs生成随机点
- from sklearn.datasets import make_blobs
-
- data,target = make_blobs()
-
- plt.scatter(data[:,0],data[:,1],c=target)

建立模型,训练数据,并进行数据预测,使用相同数据
无监督的情况下进行计算,预测 现在机器学习没有目标
- # cluster : 聚类
- from sklearn.cluster import KMeans, DBSCAN
-
- # 创建
-
- # n_clusters=8 : 默认8个组(簇),k = 8
- kmeans = KMeans(n_clusters=4)
-
- # 训练
-
- # 聚类算法:不需要提供 target
- kmeans.fit(data)
labels_ : 每个样本点的标签
- kmeans.labels_
- '''
- array([3, 3, 2, 0, 2, 0, 2, 2, 1, 3, 2, 3, 3, 1, 1, 2, 2, 0, 3, 3, 3, 1,
- 1, 2, 1, 2, 0, 3, 1, 3, 3, 1, 2, 3, 2, 1, 1, 3, 1, 1, 1, 3, 2, 1,
- 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 1, 1, 1, 3, 3, 3, 2, 1, 2, 3, 2, 1,
- 3, 1, 2, 3, 1, 3, 2, 1, 1, 3, 0, 1, 2, 2, 1, 1, 0, 0, 1, 3, 2, 2,
- 1, 2, 3, 3, 3, 3, 2, 3, 0, 1, 2, 2])
- '''
-
- plt.scatter(data[:,0],data[:,1],c=kmeans.labels_)

重要参数:
重要属性:
- # 分组的个数
- kmeans.n_clusters
- # 4
-
- # 聚类中心
- kmeans.cluster_centers_
- '''
- array([[-4.46626315, -8.14085978],
- [ 1.44224349, 4.81770399],
- [-7.01852833, -6.6710513 ],
- [-3.74353854, -6.23186778]])
- '''
绘制图形中心点,显示聚类结果kmeans.cluster_centers
- plt.scatter(data[:,0],data[:,1],c=kmeans.labels_)
-
- # 话聚类中心
- plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],c='r',s=100)

读取数据
- football = pd.read_csv('../data/AsiaFootball.txt',header=None)
- football

列名修改为:"国家","2006世界杯","2010世界杯","2007亚洲杯"
- football.columns = ["国家","2006世界杯","2010世界杯","2007亚洲杯"]
- football

data = football.iloc[:,1:].copy()
使用K-Means进行数据处理,对亚洲球队进行分组,分三组
- kmeans = KMeans(n_clusters=3)
- kmeans.fit(data)
-
- # labels
- kmeans.labels_
- # array([0, 1, 1, 2, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0])
-
- country = football['国家'].values
- country
- '''
- array(['中国', '日本', '韩国', '伊朗', '沙特', '伊拉克', '卡塔尔', '阿联酋', '乌兹别克斯坦', '泰国',
- '越南', '阿曼', '巴林', '朝鲜', '印尼'], dtype=object)
- '''
for循环打印输出分组后的球队
- 0 == kmeans.labels_
- '''
- array([ True, False, False, False, False, True, True, True, False,
- True, True, True, False, False, True])
- '''
-
- country[0 == kmeans.labels_]
- '''
- array(['中国', '伊拉克', '卡塔尔', '阿联酋', '泰国', '越南', '阿曼', '印尼'], dtype=object)
- '''
-
-
- for i in range(3):
- print(country[i == kmeans.labels_])
- '''
- ['中国' '伊拉克' '卡塔尔' '阿联酋' '泰国' '越南' '阿曼' '印尼']
- ['日本' '韩国']
- ['伊朗' '沙特' '乌兹别克斯坦' '巴林' '朝鲜']
- '''
- from sklearn.datasets import load_sample_image
-
- china = load_sample_image('china.jpg')
- plt.imshow(china)

- flower = load_sample_image('flower.jpg')
- plt.imshow(flower)

- china
- '''
- array([[[174, 201, 231],
- [174, 201, 231],
- [174, 201, 231],
- ...,
- [250, 251, 255],
- [250, 251, 255],
- [250, 251, 255]],
- [[172, 199, 229],
- [173, 200, 230],
- [173, 200, 230],
- ...,
- [251, 252, 255],
- [251, 252, 255],
- [251, 252, 255]],
- [[174, 201, 231],
- [174, 201, 231],
- [174, 201, 231],
- ...,
- [252, 253, 255],
- [252, 253, 255],
- [252, 253, 255]],
- ...,
- [[ 88, 80, 7],
- [147, 138, 69],
- [122, 116, 38],
- ...,
- [ 39, 42, 33],
- [ 8, 14, 2],
- [ 6, 12, 0]],
- [[122, 112, 41],
- [129, 120, 53],
- [118, 112, 36],
- ...,
- [ 9, 12, 3],
- [ 9, 15, 3],
- [ 16, 24, 9]],
- [[116, 103, 35],
- [104, 93, 31],
- [108, 102, 28],
- ...,
- [ 43, 49, 39],
- [ 13, 21, 6],
- [ 15, 24, 7]]], dtype=uint8)
- '''
-
- china.shape
- # (427, 640, 3)
保留主要的颜色,使用聚类成64种
- kmeans = KMeans(64)
-
- # %time kmeans.fit(china.reshape(-1,3))
- # 计算量较大,速度很慢
随机获取1000个图片中的颜色, 进行训练
- data = china.reshape(-1,3)
- data.shape
- # (273280, 3)
-
- # pd.DataFrame(data).sample(1000)
-
-
-
- from sklearn.utils import shuffle
-
- # 先打乱顺序,然后取1000个
- data2= data.copy()
- data3 = shuffle(data2)[:1000]
- data3
- '''
- array([[248, 249, 254],
- [ 63, 80, 36],
- [235, 243, 254],
- ...,
- [ 15, 26, 9],
- [101, 102, 94],
- [ 94, 104, 67]], dtype=uint8)
- '''
-
- data3.shape
- # (1000, 3)
-
使用KMeans进行聚类
- kmeans = KMeans(64)
-
- # 训练
- kmeans.fit(data3)
-
-
- #labels
- labels = kmeans.labels_
- labels
- '''
- array([40, 58, 37, 10, 36, 28, 5, 55, 40, 58, 48, 38, 4, 14, 47, 14, 1,
- 15, 29, 56, 49, 35, 19, 17, 14, 36, 47, 33, 49, 2, 62, 17, 40, 47,
- 40, 37, 40, 17, 17, 24, 57, 10, 28, 14, 55, 0, 14, 13, 34, 35, 3,
- 17, 36, 3, 58, 44, 17, 57, 35, 40, 14, 56, 17, 10, 30, 4, 6, 23,
- 31, 0, 43, 30, 36, 39, 35, 11, 55, 11, 11, 37, 40, 35, 48, 19, 17,
- 63, 16, 1, 47, 58, 5, 10, 36, 30, 63, 6, 0, 4, 24, 3, 41, 47,
- 3, 0, 46, 8, 31, 49, 38, 37, 36, 55, 27, 57, 6, 14, 0, 5, 50,
- 55, 4, 28, 23, 14, 49, 17, 5, 7, 52, 37, 24, 23, 49, 46, 9, 17,
- 39, 42, 14, 58, 0, 6, 37, 7, 14, 17, 19, 51, 14, 45, 5, 55, 10,
- 49, 0, 50, 13, 38, 17, 10, 49, 13, 44, 58, 6, 3, 45, 9, 0, 52,
- 40, 17, 58, 0, 14, 30, 63, 57, 35, 35, 0, 41, 11, 40, 10, 22, 50,
- 47, 47, 10, 17, 51, 32, 3, 37, 7, 38, 14, 63, 37, 40, 35, 40, 52,
- 0, 11, 28, 17, 54, 31, 37, 52, 63, 35, 14, 5, 9, 47, 10, 11, 17,
- 17, 5, 11, 49, 6, 2, 10, 46, 0, 55, 40, 10, 52, 37, 49, 14, 35,
- 30, 37, 52, 4, 9, 3, 52, 48, 24, 7, 25, 56, 13, 29, 12, 48, 49,
- 0, 48, 35, 35, 0, 49, 41, 44, 19, 5, 10, 20, 47, 32, 0, 41, 47,
- 39, 28, 34, 5, 26, 40, 17, 28, 58, 37, 8, 19, 42, 40, 37, 24, 31,
- 56, 37, 6, 42, 59, 29, 47, 37, 63, 58, 34, 37, 16, 29, 41, 17, 44,
- 47, 58, 51, 17, 3, 4, 0, 10, 44, 57, 14, 36, 4, 24, 30, 5, 37,
- 30, 34, 11, 8, 0, 17, 51, 7, 34, 37, 19, 6, 4, 24, 63, 50, 40,
- 2, 0, 37, 26, 36, 28, 34, 2, 39, 47, 16, 26, 32, 10, 2, 40, 6,
- 39, 8, 37, 17, 43, 11, 28, 41, 7, 13, 35, 38, 49, 50, 50, 4, 31,
- 53, 40, 43, 39, 53, 3, 48, 0, 37, 24, 62, 55, 6, 3, 28, 55, 41,
- 31, 27, 10, 46, 0, 14, 1, 40, 34, 0, 14, 20, 56, 63, 40, 11, 0,
- 2, 0, 33, 55, 3, 63, 37, 49, 10, 49, 35, 32, 35, 4, 46, 30, 14,
- 28, 17, 13, 37, 37, 35, 43, 13, 35, 60, 29, 60, 7, 63, 50, 10, 35,
- 24, 11, 55, 55, 11, 56, 16, 42, 24, 31, 17, 11, 63, 14, 16, 37, 29,
- 47, 43, 41, 35, 52, 37, 38, 58, 14, 63, 47, 3, 39, 6, 34, 41, 30,
- 51, 55, 46, 3, 10, 4, 5, 63, 14, 0, 5, 47, 40, 2, 47, 58, 17,
- 38, 33, 38, 34, 2, 49, 17, 37, 63, 35, 35, 63, 7, 45, 28, 60, 0,
- 51, 35, 14, 5, 48, 14, 40, 47, 52, 58, 35, 57, 56, 62, 40, 17, 5,
- 21, 0, 55, 1, 63, 56, 14, 28, 5, 28, 0, 2, 61, 33, 5, 38, 35,
- 17, 3, 51, 14, 17, 6, 56, 9, 0, 24, 55, 40, 44, 5, 37, 0, 10,
- 13, 8, 60, 5, 38, 38, 60, 28, 2, 4, 17, 40, 27, 55, 62, 7, 12,
- 7, 4, 51, 11, 25, 28, 5, 41, 49, 0, 50, 28, 49, 9, 5, 30, 51,
- 37, 6, 14, 51, 53, 0, 49, 14, 17, 20, 28, 63, 0, 22, 3, 10, 2,
- 35, 6, 24, 55, 40, 37, 5, 14, 40, 0, 5, 40, 47, 40, 39, 17, 0,
- 49, 11, 6, 33, 5, 63, 34, 31, 31, 49, 19, 41, 6, 11, 31, 37, 6,
- 40, 38, 27, 37, 49, 63, 21, 30, 17, 25, 33, 17, 55, 31, 51, 34, 6,
- 24, 51, 7, 18, 40, 40, 27, 28, 18, 48, 47, 28, 40, 1, 27, 0, 29,
- 14, 28, 5, 11, 10, 39, 17, 47, 55, 39, 3, 48, 17, 1, 49, 22, 14,
- 13, 56, 16, 29, 35, 33, 7, 34, 40, 34, 28, 0, 54, 56, 14, 37, 11,
- 6, 0, 63, 63, 11, 51, 3, 14, 20, 40, 2, 38, 14, 29, 48, 28, 21,
- 0, 11, 25, 19, 24, 34, 14, 40, 0, 35, 2, 6, 56, 55, 40, 11, 44,
- 55, 57, 2, 14, 58, 31, 50, 10, 63, 48, 40, 52, 34, 59, 5, 48, 17,
- 55, 39, 0, 10, 26, 34, 27, 47, 37, 10, 17, 5, 50, 37, 37, 49, 19,
- 5, 11, 6, 37, 10, 15, 19, 53, 26, 55, 17, 17, 48, 14, 14, 47, 14,
- 48, 49, 14, 11, 7, 24, 13, 63, 44, 10, 29, 41, 55, 28, 49, 31, 58,
- 11, 17, 22, 29, 2, 53, 14, 58, 38, 37, 40, 49, 63, 17, 61, 18, 31,
- 14, 37, 17, 6, 24, 26, 38, 5, 47, 37, 31, 3, 11, 32, 7, 51, 37,
- 63, 37, 40, 43, 37, 34, 55, 39, 14, 17, 28, 22, 46, 14, 14, 37, 63,
- 28, 9, 10, 14, 10, 37, 48, 0, 29, 37, 48, 53, 16, 44, 14, 55, 17,
- 55, 34, 3, 40, 40, 17, 9, 17, 11, 6, 0, 4, 3, 47, 33, 10, 45,
- 48, 30, 29, 56, 24, 9, 0, 0, 9, 28, 34, 37, 40, 0, 63, 6, 40,
- 38, 22, 22, 34, 35, 58, 11, 48, 11, 17, 37, 11, 6, 14, 4, 35, 0,
- 36, 28, 13, 37, 55, 14, 4, 50, 46, 0, 0, 49, 48, 14, 13, 37, 31,
- 48, 24, 0, 63, 14, 10, 51, 31, 40, 10, 11, 20, 10, 47, 31, 47, 8,
- 14, 52, 5, 4, 14, 18, 57, 63, 0, 50, 44, 47, 21, 56, 59, 54, 32,
- 17, 14, 5, 45, 11, 49, 6, 48, 63, 53, 45, 28, 26, 38])
- '''
-
- # 聚类中心
- centers = kmeans.cluster_centers_
- centers
- '''
- array([[241.42 , 246.04 , 253.34 ],
- [ 66.33333333, 95.66666667, 95. ],
- [ 49.06666667, 25. , 22.46666667],
- [180.7 , 191.55 , 188.2 ],
- [123.52941176, 111.64705882, 92.58823529],
- [ 47.26666667, 48.93333333, 36.6 ],
- [205.76923077, 226.88461538, 249.65384615],
- [ 84.78571429, 74.64285714, 56.64285714],
- [218.33333333, 175.33333333, 136.16666667],
- [146.8 , 156.1 , 162.3 ],
- [209.65625 , 209.34375 , 214.59375 ],
- [ 14.06451613, 13.12903226, 6.96774194],
- [218.5 , 119.5 , 106. ],
- [107.41666667, 110.08333333, 45.75 ],
- [186.38888889, 210.09259259, 236.55555556],
- [209. , 95. , 33.5 ],
- [111.28571429, 47.28571429, 28.14285714],
- [220.40816327, 236.42857143, 252.53061224],
- [157.5 , 128.75 , 106.75 ],
- [149.5 , 142. , 130.8 ],
- [248.6 , 169.4 , 105.8 ],
- [167. , 154.5 , 85.25 ],
- [ 33. , 68.85714286, 73. ],
- [ 80. , 15.33333333, 4.66666667],
- [ 86.38888889, 86.22222222, 32.27777778],
- [237.25 , 199.75 , 172.5 ],
- [102.57142857, 104. , 96.14285714],
- [172.57142857, 161.71428571, 134.28571429],
- [ 23.64285714, 27.14285714, 16.28571429],
- [170.76923077, 183.46153846, 175.07692308],
- [123.25 , 126.16666667, 113.91666667],
- [ 57.77777778, 53.94444444, 48.5 ],
- [170.83333333, 97.16666667, 81.5 ],
- [119.25 , 74.625 , 42.75 ],
- [193.4 , 203. , 205.35 ],
- [200.06896552, 211.51724138, 225.72413793],
- [137.66666667, 140.33333333, 81.11111111],
- [231.72 , 242.08 , 253.46 ],
- [ 99.64705882, 96.58823529, 65.64705882],
- [219.25 , 223.58333333, 225.83333333],
- [249.93181818, 250.47727273, 253.84090909],
- [ 75.08333333, 79.66666667, 73.66666667],
- [145.75 , 59.25 , 48.25 ],
- [193.66666667, 146.83333333, 109.33333333],
- [ 84.6 , 40.5 , 31.3 ],
- [198.83333333, 126.16666667, 85.66666667],
- [ 18.25 , 46.75 , 45.75 ],
- [ 35.67857143, 36.35714286, 26.10714286],
- [ 4.66666667, 3.33333333, 1.42857143],
- [240.03571429, 239.89285714, 241.92857143],
- [152.5 , 171.58333333, 181.5 ],
- [ 65.86666667, 69.6 , 53.66666667],
- [123.27272727, 119.54545455, 61.18181818],
- [ 50.57142857, 46.28571429, 9.28571429],
- [164. , 83.66666667, 57.66666667],
- [230.10714286, 232.53571429, 237.71428571],
- [ 40.42857143, 12.28571429, 11.78571429],
- [131.875 , 152. , 139.5 ],
- [ 67.47058824, 64.94117647, 23.35294118],
- [104. , 102.33333333, 18.66666667],
- [104.6 , 117.2 , 118.4 ],
- [165.5 , 182.5 , 100.5 ],
- [131.75 , 87.75 , 78.75 ],
- [194.43333333, 218.43333333, 244.86666667]])
- '''
-
-
- centers.shape, labels.shape
- # ((64, 3), (1000,))
-
- # 预测
- y_pred = kmeans.predict(data)
- y_pred.shape
- # (273280,)
-
- y_pred
- # array([14, 14, 14, ..., 5, 11, 11])
上面已经对 27万个 像素值 预测出了结果,结果的范围是0~63,共64组
接下来,我们用64个聚类中心点,分布替换每一个分组的所有像素值
plt.imshow(china)

- centers.shape
- # (64, 3)
-
- centers[y_pred].shape
- # (273280, 3)
-
- # 新图
- new_china = centers[y_pred].reshape(427,640,3)
- new_china
- '''
- array([[[186.38888889, 210.09259259, 236.55555556],
- [186.38888889, 210.09259259, 236.55555556],
- [186.38888889, 210.09259259, 236.55555556],
- ...,
- [249.93181818, 250.47727273, 253.84090909],
- [249.93181818, 250.47727273, 253.84090909],
- [249.93181818, 250.47727273, 253.84090909]],
- [[186.38888889, 210.09259259, 236.55555556],
- [186.38888889, 210.09259259, 236.55555556],
- [186.38888889, 210.09259259, 236.55555556],
- ...,
- [249.93181818, 250.47727273, 253.84090909],
- [249.93181818, 250.47727273, 253.84090909],
- [249.93181818, 250.47727273, 253.84090909]],
- [[186.38888889, 210.09259259, 236.55555556],
- [186.38888889, 210.09259259, 236.55555556],
- [186.38888889, 210.09259259, 236.55555556],
- ...,
- [249.93181818, 250.47727273, 253.84090909],
- [249.93181818, 250.47727273, 253.84090909],
- [249.93181818, 250.47727273, 253.84090909]],
- ...,
- [[ 86.38888889, 86.22222222, 32.27777778],
- [137.66666667, 140.33333333, 81.11111111],
- [107.41666667, 110.08333333, 45.75 ],
- ...,
- [ 35.67857143, 36.35714286, 26.10714286],
- [ 14.06451613, 13.12903226, 6.96774194],
- [ 4.66666667, 3.33333333, 1.42857143]],
- [[107.41666667, 110.08333333, 45.75 ],
- [123.27272727, 119.54545455, 61.18181818],
- [107.41666667, 110.08333333, 45.75 ],
- ...,
- [ 14.06451613, 13.12903226, 6.96774194],
- [ 14.06451613, 13.12903226, 6.96774194],
- [ 23.64285714, 27.14285714, 16.28571429]],
- [[107.41666667, 110.08333333, 45.75 ],
- [104. , 102.33333333, 18.66666667],
- [104. , 102.33333333, 18.66666667],
- ...,
- [ 47.26666667, 48.93333333, 36.6 ],
- [ 14.06451613, 13.12903226, 6.96774194],
- [ 14.06451613, 13.12903226, 6.96774194]]])
- '''
-
- plt.imshow(new_china / 255)

导包
- import numpy as np
- import pandas as pd
- import matplotlib.pyplot as plt
- %matplotlib inline
-
- from sklearn.cluster import KMeans, DBSCAN
生成数据make_blobs()
- from sklearn.datasets import make_blobs
-
- data,target = make_blobs()
-
- plt.scatter(data[:,0],data[:,1],c=target)

使用DBSCAN
- # eps:半径
- # min_samples:形成组(簇)的最小样本数
- dbscan = DBSCAN(eps=1,min_samples=3)
-
- dbscan.fit(data)
-
- # 标签,分组结果
- dbscan.labels_
- # -1:离群点/噪声点
- '''
- array([ 0, 0, 1, -1, 0, 1, 2, 2, 1, 0, 2, 1, 2, 1, 0, 1, 2,
- 0, 0, 2, 0, 0, 2, 0, 2, 1, 2, 0, 0, 2, 1, 2, 2, 2,
- 2, 2, 1, 2, 1, 2, 2, -1, 0, 0, 0, 1, 0, 0, 1, 0, 2,
- 0, 0, 0, 2, 1, -1, 2, 1, -1, 1, 0, 0, 0, 0, 1, 2, 0,
- 2, 1, 2, 2, 1, 1, 1, 0, 0, 2, 1, 2, 1, 2, 1, 1, 1,
- 0, 2, 0, 1, 1, 0, 1, 2, 1, 0, 2, -1, 1, 0, 2],
- dtype=int64)
- '''
-
- plt.scatter(data[:,0],data[:,1],c=dbscan.labels_)
分别使用KMeans和DBSCAN算法
画圆
- from sklearn.datasets import make_circles
-
- # 画圆
- data,target = make_circles(
- n_samples=300, # 样本数
- noise=0.09,# 噪声
- factor=0.4,# 可理解为两堆点的离散程度,值小于 1
- )
-
- plt.figure(figsize=(6,6))
- plt.scatter(data[:,0],data[:,1],c=target)
-
- # 使用 DBSCAN
- dbscan = DBSCAN(eps=0.2,min_samples=3)
- dbscan.fit(data)
-
- plt.scatter(data[:,0],data[:,1],c=dbscan.labels_)

使用KMeans 查看效果区别
- kmeans = KMeans(n_clusters=2)
-
- kmeans.fit(data)
-
- plt.scatter(data[:,0],data[:,1],c=kmeans.labels_)

聚类算法的评估指标,轮廓系数

- import pandas as pd
- import numpy as np
- import matplotlib.pyplot as plt
- %matplotlib inline
加载数据
- beer = pd.read_table('../data/beer.txt',sep=' ')
- beer

data = beer.iloc[:,1:].copy()
导入KMeans
- from sklearn.cluster import KMeans, DBSCAN
-
- kmeans = KMeans(n_clusters=4)
- kmeans.fit(data)
-
- kmeans.labels_
- # array([0, 0, 0, 2, 0, 0, 2, 0, 1, 1, 0, 1, 0, 0, 0, 3, 0, 0, 3, 1])
- from sklearn.metrics import silhouette_samples,silhouette_score
-
- # silhouette_samples(data,kmeans.labels_)
- '''
- array([0.69616375, 0.59904896, 0.22209903, 0.33228274, 0.47164962,
- 0.6803127 , 0.41274592, 0.53937684, 0.73244266, 0.58828484,
- 0.70434972, 0.71134265, 0.52449913, 0.63186817, 0.45253349,
- 0.72050474, 0.6934216 , 0.66869429, 0.68369738, 0.64876323])
- '''
-
- silhouette_score(data,kmeans.labels_) # 平均轮廓系数
- # 0.5857040721127795
如何根据轮廓系数选择最合适的K
- # 提供不同的 K 值,分别计算轮廓系数
- score_list = []
- for k in range(2,20):
- kmeans = KMeans(k)
- kmeans.fit(data)
- score = silhouette_score(data,kmeans.labels_)
- # print(k,'得分',score)
- score_list.append(score)
-
- # 画图
- plt.plot(range(2,20),score_list)
- plt.xticks(range(2,20))
- plt.grid()
- plt.show()

DBSCAN使用轮廓系数
from sklearn.cluster import KMeans, DBSCAN
- score_list = []
-
- for eps in range(2,26):
- dbscan = DBSCAN(eps=eps,min_samples=2)
- dbscan.fit(data)
-
- score = silhouette_score(data,dbscan.labels_)
- score_list.append(score)
-
-
- # 画图
- plt.plot(range(2,26),score_list)
- plt.xticks(range(2,26))
- plt.grid()
- plt.show()
-
- # eps半径 = 18到22时轮廓系数最大
