• 语义SLAM论文以及code地址总结


    备忘,记录语义SLAM的一些论文和学习资料
    涉及的部分论文戳这里,免费下载

    相关算法

    1.AVP-SLAM
    论文:Semantic Visual Mapping and Localization for Autonomous Vehicles in the Parking Lot
    代码:有基于仿真的复现版本AVP-SLAM-PLUS,参考版本AVP-SLAM-SIM
    https://github.com/liuguitao/AVP-SLAM-PLUS
    https://github.com/TurtleZhong/AVP-SLAM-SIM

    有兴趣可以看下AVP-SLAM-PLUS的代码,思路比较简单,如果手中有拼接和分割比较好的环视数据集比较容易进行修改,基本原理就是把包含语义信息的图像转成点云再使用icp,但是在使用自己的数据时icp点云配准效果很不好,后来用特征匹配给他提供了下初值效果的到了改善。

    再多说一句,秦通博士的原论文是基于惯导和轮速计提供的位姿实现的语义地图的拼接,之后又使用icp进行局部地图优化等等操作优化累计误差,如果有惯导和轮速计数据应该会得到比较好的建图和定位效果,因为在调试过程中如果惯导比较给力,在地库里面直接通过惯导和轮速计在短时间的到的位姿还是比较准确的。

    2.DSP-SLAM室外车辆语义信息检测
    论文:DSP-SLAM: Object Oriented SLAM with Deep Shape Priors
    代码:https://github.com/JingwenWang95/DSP-SLAM

    3.Probabilistic Data Association for Semantic SLAM

    4.VSO
    VSO: Visual Semantic Odometry

    5.DS-SLAM
    论文:DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments
    代码:https://github.com/ivipsourcecode/DS-SLAM.git

    6.Kimera
    Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping

    7.DeepLabv3+SLAM
    Semantic SLAM Based on Improvement DeepLabv3+ in Dynamic Scenarios

    语义SLAM用于特征选择

    1.1 选择感兴趣区域的点

    SalientDSO:Bringing Attention to Direct Sparse Odometry

    1.2 选择具有更大信息量的点

    Visual SLAM with Network Uncertainty Informed Feature Selection

    毕业论文:SIVO:Semantically Informed Visual odometry and mapping
    代码:https://github.com/navganti/SIVO

    1.3 去除动态(e.g,car)和远处(e.g, sky)的类别的点

    Utilizing Semantic Visual Landmarks for Precise Vehicle Navigation

    语义SLAM用于动态SLAM

    1. Detect-SLAM: Making Object Detection and SLAM Mutually Beneficial_WACV2018
    2. DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments—IROS2018
    3. DynaSLAM: Tracking, Mapping and Inpainting in Dynamic Scenes—IEEE Robotics and Automation Letters, 2018
      代码:https://github.com/BertaBescos/DynaSLAM
    4. Semantic Monocular SLAM for Highly Dynamic Environments—IROS2018
    5. Semantic segmentation–aided visual odometry for urban autonomous driving—IJARS2017
    6. Stereo Vision-based Semantic 3D Object and Ego-motion Tracking for Autonomous Driving—ECCV2018

    语义SLAM用于长时间运行场景下的定位

    Long-term Visual Localization using Semantically Segmented Images—ICRA2018

    语义信息用于提高定位精度

    1. Probabilistic Data Association for Semantic SLAM—ICRA2017
    2. VSO Visual Semantic Odometry—ECCV2018
  • 相关阅读:
    诡异的bug之dlopen
    idea 将项目上传到gitee远程仓库具体操作
    Spring监听器
    C#位运算符
    基于Python实现损失函数的参数估计
    在移动硬盘上安装Win11系统(不使用工具)
    服务器cpu和普通cpu有哪些不同
    Spring AMQP元注解
    redux、mobx
    学习笔记(9)JavaScript元素、节点
  • 原文地址:https://blog.csdn.net/guanjing_dream/article/details/127804868