此系列属于胡寿松《自动控制原理题海与考研指导》(第三版)习题精选,仅包含部分经典习题,需要完整版习题答案请自行查找,本系列属于知识点巩固部分,搭配如下几个系列进行学习,可用于期末考试和考研复习。
自动控制原理(第七版)知识提炼
自动控制原理(第七版)课后习题精选
自动控制原理(第七版)附录MATLAB基础
已知下图系统采用单速同步采样工作方式,采样周期 T = 0.1 T=0.1 T=0.1。求:

解:
求 C ( z ) / R ( z ) C(z)/R(z) C(z)/R(z)。
令
G
1
(
s
)
=
1
−
e
−
T
s
s
⋅
0.5
s
(
0.05
s
+
1
)
,
H
(
s
)
=
2
G_1(s)=\frac{1-{\rm e}^{-Ts}}{s}·\frac{0.5}{s(0.05s+1)},H(s)=2
G1(s)=s1−e−Ts⋅s(0.05s+1)0.5,H(s)=2
则
G
1
H
(
z
)
=
(
1
−
z
−
1
)
Z
[
1
s
2
(
0.05
s
+
1
)
]
=
(
1
−
z
−
1
)
Z
[
20
s
2
(
s
+
20
)
]
=
(
1
−
z
−
1
)
20
Z
[
20
s
2
−
1
s
+
1
s
+
20
]
=
1
20
(
1
−
z
−
1
)
[
20
T
z
(
z
−
1
)
2
−
z
z
−
1
+
z
z
−
e
−
20
T
]
=
(
20
T
−
1
+
e
−
20
T
)
z
+
(
1
−
e
−
20
T
−
20
T
e
−
20
T
)
20
(
z
−
1
)
(
z
−
e
−
20
T
)
G1H(z)=(1−z−1)Z[1s2(0.05s+1)]=(1−z−1)Z[20s2(s+20)]=(1−z−1)20Z[20s2−1s+1s+20]=120(1−z−1)[20Tz(z−1)2−zz−1+zz−e−20T]=(20T−1+e−20T)z+(1−e−20T−20Te−20T)20(z−1)(z−e−20T)
G1H(z)=(1−z−1)Z[s2(0.05s+1)1]=(1−z−1)Z[s2(s+20)20]=20(1−z−1)Z[s220−s1+s+201]=201(1−z−1)[(z−1)220Tz−z−1z+z−e−20Tz]=20(z−1)(z−e−20T)(20T−1+e−20T)z+(1−e−20T−20Te−20T)
代入
T
=
0.1
T=0.1
T=0.1可得:
G
1
H
(
z
)
=
0.057
z
+
0.03
z
2
−
1.135
z
+
0.135
G_1H(z)=\frac{0.057z+0.03}{z^2-1.135z+0.135}
G1H(z)=z2−1.135z+0.1350.057z+0.03
闭环脉冲传递函数为:
Φ
(
z
)
=
C
(
z
)
R
(
z
)
=
K
G
1
(
z
)
1
+
K
G
1
H
(
z
)
=
K
(
0.028
z
+
0.015
)
z
2
+
(
0.057
K
−
1.135
)
z
+
(
0.03
K
+
0.135
)
\Phi(z)=\frac{C(z)}{R(z)}=\frac{KG_1(z)}{1+KG_1H(z)}=\frac{K(0.028z+0.015)}{z^2+(0.057K-1.135)z+(0.03K+0.135)}
Φ(z)=R(z)C(z)=1+KG1H(z)KG1(z)=z2+(0.057K−1.135)z+(0.03K+0.135)K(0.028z+0.015)
求 K K K值范围。
系统闭环特征方程为:
D
(
z
)
=
z
2
+
(
0.057
K
−
1.135
)
z
+
(
0.03
K
+
0.135
)
=
0
D(z)=z^2+(0.057K-1.135)z+(0.03K+0.135)=0
D(z)=z2+(0.057K−1.135)z+(0.03K+0.135)=0
令
z
=
w
+
1
w
−
1
z=\displaystyle\frac{w+1}{w-1}
z=w−1w+1,可得:
D
(
w
)
=
0.087
K
w
2
+
(
1.73
−
0.06
K
)
w
+
(
2.27
−
0.027
K
)
=
0
D(w)=0.087Kw^2+(1.73-0.06K)w+(2.27-0.027K)=0
D(w)=0.087Kw2+(1.73−0.06K)w+(2.27−0.027K)=0
根据稳定的充要条件,应有:
K
>
0
,
1.73
−
0.06
K
>
0
,
2.27
−
0.027
K
>
0
K>0,1.73-0.06K>0,2.27-0.027K>0
K>0,1.73−0.06K>0,2.27−0.027K>0
解得:
0
<
K
<
28.83
0
求稳态输出。
令 K = 1 K=1 K=1,单位阶跃输入的 z z z变换为: R ( z ) = z z − 1 R(z)=\displaystyle\frac{z}{z-1} R(z)=z−1z。
闭环脉冲传递函数为:
Φ
(
z
)
=
0.028
z
+
0.015
z
2
−
1.078
z
+
0.165
\Phi(z)=\frac{0.028z+0.015}{z^2-1.078z+0.165}
Φ(z)=z2−1.078z+0.1650.028z+0.015
由
z
z
z变换终值定理可得:
c
(
∞
)
=
lim
z
→
1
(
1
−
z
−
1
)
C
(
z
)
=
lim
z
→
1
(
1
−
z
−
1
)
Φ
(
z
)
R
(
z
)
=
lim
z
→
1
[
z
−
1
z
×
0.028
z
+
0.015
z
2
−
1.078
z
+
0.165
×
z
z
−
1
]
=
0.5
c(∞)=limz→1(1−z−1)C(z)=limz→1(1−z−1)Φ(z)R(z)=limz→1[z−1z×0.028z+0.015z2−1.078z+0.165×zz−1]=0.5
c(∞)=z→1lim(1−z−1)C(z)=z→1lim(1−z−1)Φ(z)R(z)=z→1lim[zz−1×z2−1.078z+0.1650.028z+0.015×z−1z]=0.5
已知采样系统如下图所示,各采样开关同步工作,采样周期 T T T及时间常数 T 0 T_0 T0均大于零的实常数,且 e − T / T 0 = 0.2 {\rm e}^{-T/T_0}=0.2 e−T/T0=0.2。要求:

解:
求 K K K值范围。
因为
D
(
z
)
=
1
D(z)=1
D(z)=1,故系统开环传递函数为:
G
(
s
)
=
(
1
−
e
−
T
s
)
K
e
−
T
s
s
(
T
0
s
+
1
)
G(s)=\frac{(1-{\rm e}^{-Ts})K{\rm e}^{-Ts}}{s(T_0s+1)}
G(s)=s(T0s+1)(1−e−Ts)Ke−Ts
开环脉冲传递函数为:
G
(
z
)
=
K
z
−
1
(
1
−
z
−
1
)
Z
[
1
/
T
0
s
(
s
+
1
/
T
0
)
]
=
K
z
−
1
z
2
⋅
(
1
−
e
−
T
/
T
0
)
z
(
z
−
1
)
(
z
−
e
−
T
/
T
0
)
G(z)=Kz^{-1}(1-z^{-1})Z\left[\frac{1/T_0}{s(s+1/T_0)}\right]=K\frac{z-1}{z^2}·\frac{(1-{\rm e}^{-T/T_0})z}{(z-1)(z-{\rm e}^{-T/T_0})}
G(z)=Kz−1(1−z−1)Z[s(s+1/T0)1/T0]=Kz2z−1⋅(z−1)(z−e−T/T0)(1−e−T/T0)z
代入
e
−
T
/
T
0
=
0.2
{\rm e}^{-T/T_0}=0.2
e−T/T0=0.2,可得:
G
(
z
)
=
0.8
K
z
(
z
−
0.2
)
G(z)=\frac{0.8K}{z(z-0.2)}
G(z)=z(z−0.2)0.8K
闭环脉冲传递函数为:
Φ
(
z
)
=
G
(
z
)
1
+
G
(
z
)
=
0.8
K
z
2
−
0.2
z
+
0.8
K
\Phi(z)=\frac{G(z)}{1+G(z)}=\frac{0.8K}{z^2-0.2z+0.8K}
Φ(z)=1+G(z)G(z)=z2−0.2z+0.8K0.8K
闭环特征方程为:
D
(
z
)
=
z
2
−
0.2
z
+
0.8
K
=
0
D(z)=z^2-0.2z+0.8K=0
D(z)=z2−0.2z+0.8K=0
令
z
=
w
+
1
w
−
1
z=\displaystyle\frac{w+1}{w-1}
z=w−1w+1,代入特征方程可得:
D
(
w
)
=
0.8
(
1
+
K
)
w
2
+
(
2
−
1.6
K
)
w
+
(
1.2
+
0.8
K
)
=
0
D(w)=0.8(1+K)w^2+(2-1.6K)w+(1.2+0.8K)=0
D(w)=0.8(1+K)w2+(2−1.6K)w+(1.2+0.8K)=0
可得:
1
+
K
>
0
,
2
−
1.6
K
>
0
,
1.2
+
0.8
K
>
0
1+K>0,2-1.6K>0,1.2+0.8K>0
1+K>0,2−1.6K>0,1.2+0.8K>0
在
K
>
0
K>0
K>0要求下,使系统稳定的
K
K
K值范围为:
0
<
K
<
1.25
0
求 a , b , c a,b,c a,b,c。
令
K
=
1
,
D
(
z
)
=
b
z
+
c
z
−
1
K=1,D(z)=\displaystyle\frac{bz+c}{z-1}
K=1,D(z)=z−1bz+c,系统闭环特征方程为:
1
+
D
(
z
)
G
(
z
)
=
0
1+D(z)G(z)=0
1+D(z)G(z)=0
代入
D
(
z
)
D(z)
D(z)及
G
(
z
)
G(z)
G(z),可得:
z
3
−
1.2
z
2
+
(
0.2
+
0.8
b
)
z
+
0.8
c
=
0
z^3-1.2z^2+(0.2+0.8b)z+0.8c=0
z3−1.2z2+(0.2+0.8b)z+0.8c=0
由题意,采样系统有三重根
a
a
a,则闭环特征方程表示为:
1
+
D
(
z
)
G
(
z
)
=
(
z
−
a
)
3
=
0
1+D(z)G(z)=(z-a)^3=0
1+D(z)G(z)=(z−a)3=0
即
z
3
−
3
a
z
2
+
3
a
2
z
−
a
3
=
0
z^3-3az^2+3a^2z-a^3=0
z3−3az2+3a2z−a3=0
对比系数有:
{
3
a
=
1.2
3
a
2
=
0.2
+
0.8
b
a
3
=
−
0.8
c
⇒
{
a
=
0.4
b
=
3
a
2
−
0.2
0.8
=
0.35
c
=
−
a
3
0.8
=
−
0.08
{3a=1.23a2=0.2+0.8ba3=−0.8c\Rightarrow{a=0.4b=3a2−0.20.8=0.35c=−a30.8=−0.08
⎩
⎨
⎧3a=1.23a2=0.2+0.8ba3=−0.8c⇒⎩
⎨
⎧a=0.4b=0.83a2−0.2=0.35c=−0.8a3=−0.08
设采样系统如下图所示,已知 r ( t ) = 1 ( t ) , T = 1 r(t)=1(t),T=1 r(t)=1(t),T=1。计算 D ( z ) D(z) D(z),使系统输出量的 z z z闭环 C ( z ) = 1 z − 1 C(z)=\displaystyle\frac{1}{z-1} C(z)=z−11,并作出 c ∗ ( t ) c^*(t) c∗(t)的图形。 ( 提示: Z [ 1 s + a ] = z z − e − a T ) \left(提示:Z\left[\displaystyle\frac{1}{s+a}\right]=\displaystyle\frac{z}{z-{\rm e}^{-aT}}\right) (提示:Z[s+a1]=z−e−aTz).

解:
由图可得:
G
1
(
s
)
=
1
−
e
−
T
s
s
(
s
+
1
)
,
G
1
(
z
)
=
1
−
e
−
T
z
−
e
−
T
=
0.632
z
−
0.368
G_1(s)=\frac{1-{\rm e}^{-Ts}}{s(s+1)},G_1(z)=\frac{1-{\rm e}^{-T}}{z-{\rm e}^{-T}}=\frac{0.632}{z-0.368}
G1(s)=s(s+1)1−e−Ts,G1(z)=z−e−T1−e−T=z−0.3680.632
开环脉冲传递函数为:
G
(
z
)
=
D
(
z
)
G
1
(
z
)
G(z)=D(z)G_1(z)
G(z)=D(z)G1(z)
输出
z
z
z变换:
C
(
z
)
=
Φ
(
z
)
R
(
z
)
=
D
(
z
)
G
1
(
z
)
R
(
z
)
1
+
D
(
z
)
G
1
(
z
)
⇒
D
(
z
)
=
C
(
z
)
G
1
(
z
)
[
R
(
z
)
−
C
(
z
)
]
C(z)=\Phi(z)R(z)=\frac{D(z)G_1(z)R(z)}{1+D(z)G_1(z)}\Rightarrow{D(z)}=\frac{C(z)}{G_1(z)[R(z)-C(z)]}
C(z)=Φ(z)R(z)=1+D(z)G1(z)D(z)G1(z)R(z)⇒D(z)=G1(z)[R(z)−C(z)]C(z)
因
R
(
z
)
=
z
z
−
1
,
C
(
z
)
=
1
z
−
1
R(z)=\frac{z}{z-1},C(z)=\frac{1}{z-1}
R(z)=z−1z,C(z)=z−11
可得:
D
(
z
)
=
1.582
(
z
−
0.368
)
z
−
1
D(z)=\frac{1.582(z-0.368)}{z-1}
D(z)=z−11.582(z−0.368)
由于
C
(
z
)
=
1
z
−
1
=
z
−
1
+
z
−
2
+
z
−
3
+
z
−
4
+
⋯
+
C(z)=\frac{1}{z-1}=z^{-1}+z^{-2}+z^{-3}+z^{-4}+\cdots+
C(z)=z−11=z−1+z−2+z−3+z−4+⋯+
故
c
∗
(
t
)
=
δ
(
t
−
T
)
+
δ
(
t
−
2
T
)
+
δ
(
t
−
3
T
)
+
δ
(
t
−
4
T
)
+
⋯
+
c^*(t)=\delta(t-T)+\delta(t-2T)+\delta(t-3T)+\delta(t-4T)+\cdots+
c∗(t)=δ(t−T)+δ(t−2T)+δ(t−3T)+δ(t−4T)+⋯+
【
c
∗
(
t
)
c^*(t)
c∗(t)的图形】

已知采样系统如下图所示。确定增益 K K K的取值范围,使系统在单位斜坡输入信号作用下的稳态误差 ∣ e s s ( ∞ ) ∣ ≤ ϵ |e_{ss}(\infty)|≤\epsilon ∣ess(∞)∣≤ϵ,并确定 K K K与采样周期及指定误差界 ϵ \epsilon ϵ之间的关系。

解:
求闭环特征方程。
由图可知,令
G
1
(
s
)
=
K
(
1
−
e
−
T
s
)
s
(
s
+
1
)
G_1(s)=\frac{K(1-{\rm e}^{-Ts})}{s(s+1)}
G1(s)=s(s+1)K(1−e−Ts)
可得:
G
1
(
z
)
=
K
(
1
−
z
−
1
)
Z
[
1
s
(
s
+
1
)
]
=
K
(
1
−
z
−
1
)
(
z
z
−
1
−
z
z
−
e
−
T
)
=
K
(
1
−
e
−
T
)
z
−
e
−
T
G_1(z)=K(1-z^{-1})Z\left[\frac{1}{s(s+1)}\right]=K(1-z^{-1})\left(\frac{z}{z-1}-\frac{z}{z-{\rm e}^{-T}}\right)=\frac{K(1-{\rm e}^{-T})}{z-{\rm e}^{-T}}
G1(z)=K(1−z−1)Z[s(s+1)1]=K(1−z−1)(z−1z−z−e−Tz)=z−e−TK(1−e−T)
因为
d
∗
(
k
)
=
d
∗
(
k
−
1
)
+
e
∗
(
k
)
⇒
(
1
−
z
−
1
)
d
(
z
)
=
e
(
z
)
⇒
D
(
z
)
=
d
(
z
)
e
(
z
)
=
z
z
−
1
d^*(k)=d^*(k-1)+e^*(k)\Rightarrow(1-z^{-1})d(z)=e(z)\Rightarrow{D(z)}=\frac{d(z)}{e(z)}=\frac{z}{z-1}
d∗(k)=d∗(k−1)+e∗(k)⇒(1−z−1)d(z)=e(z)⇒D(z)=e(z)d(z)=z−1z
开环脉冲传递函数为:
G
(
z
)
=
D
(
z
)
G
1
(
z
)
=
K
z
(
1
−
e
−
T
)
z
2
−
(
1
+
e
−
T
)
z
+
e
−
T
G(z)=D(z)G_1(z)=\frac{Kz(1-{\rm e}^{-T})}{z^2-(1+{\rm e}^{-T})z+{\rm e}^{-T}}
G(z)=D(z)G1(z)=z2−(1+e−T)z+e−TKz(1−e−T)
闭环脉冲传递函数为:
Φ
(
z
)
=
G
(
z
)
1
+
G
(
z
)
=
K
z
(
1
−
e
−
T
)
z
2
+
[
K
(
1
−
e
−
T
)
−
(
1
+
e
−
T
)
]
z
+
e
−
T
\Phi(z)=\frac{G(z)}{1+G(z)}=\frac{Kz(1-{\rm e}^{-T})}{z^2+[K(1-{\rm e}^{-T})-(1+{\rm e}^{-T})]z+{\rm e}^{-T}}
Φ(z)=1+G(z)G(z)=z2+[K(1−e−T)−(1+e−T)]z+e−TKz(1−e−T)
可得闭环特征方程:
D
(
z
)
=
z
2
+
[
K
(
1
−
e
−
T
)
−
(
1
+
e
−
T
)
]
z
+
e
−
T
=
0
D(z)=z^2+[K(1-{\rm e}^{-T})-(1+{\rm e}^{-T})]z+{\rm e}^{-T}=0
D(z)=z2+[K(1−e−T)−(1+e−T)]z+e−T=0
令
a
=
K
(
1
−
e
−
T
)
−
(
1
+
e
−
T
)
⇒
D
(
z
)
=
z
2
+
a
z
+
e
−
T
=
0
a=K(1-{\rm e}^{-T})-(1+{\rm e}^{-T})\Rightarrow{D(z)}=z^2+az+{\rm e}^{-T}=0
a=K(1−e−T)−(1+e−T)⇒D(z)=z2+az+e−T=0
求使系统稳定的 K K K值。
令
z
=
w
+
1
w
−
1
z=\displaystyle\frac{w+1}{w-1}
z=w−1w+1,代入特征方程,整理可得:
D
(
w
)
=
(
1
+
a
+
e
−
T
)
w
2
+
(
2
−
2
e
−
T
)
w
+
(
1
−
a
+
e
−
T
)
=
0
D(w)=(1+a+{\rm e}^{-T})w^2+(2-2{\rm e}^{-T})w+(1-a+{\rm e}^{-T})=0
D(w)=(1+a+e−T)w2+(2−2e−T)w+(1−a+e−T)=0
使系统稳定的充要条件为:
1
+
a
+
e
−
T
>
0
,
2
−
2
e
−
T
>
0
,
1
−
a
+
e
−
T
>
0
1+a+{\rm e}^{-T}>0,2-2{\rm e}^{-T}>0,1-a+{\rm e}^{-T}>0
1+a+e−T>0,2−2e−T>0,1−a+e−T>0
应有
−
1
−
e
−
T
<
a
<
1
+
e
−
T
-1-{\rm e}^{-T}−1−e−T<a<1+e−T
代入
a
a
a表达式,可得:
0
<
K
<
2
(
1
+
e
−
T
)
1
−
e
−
T
0
求满足误差界要求的 K K K值。
因静态速度误差系数为:
K
v
=
lim
z
→
1
(
z
−
1
)
G
(
z
)
=
lim
z
→
1
(
z
−
1
)
K
z
(
1
−
e
−
T
)
(
z
−
1
)
(
z
−
e
−
T
)
=
K
K_v=\lim_{z\to1}(z-1)G(z)=\lim_{z\to1}(z-1)\frac{Kz(1-{\rm e}^{-T})}{(z-1)(z-{\rm e}^{-T})}=K
Kv=z→1lim(z−1)G(z)=z→1lim(z−1)(z−1)(z−e−T)Kz(1−e−T)=K
稳态误差为:
e
s
s
(
∞
)
=
T
K
v
=
T
K
≤
ϵ
⇒
K
≥
T
ϵ
e_{ss}(\infty)=\frac{T}{K_v}=\frac{T}{K}≤\epsilon\Rightarrow{K≥}\frac{T}{\epsilon}
ess(∞)=KvT=KT≤ϵ⇒K≥ϵT
因而,满足题意要求的增益范围为:
T
ϵ
≤
K
<
2
(
1
+
e
−
T
)
1
−
e
−
T
\frac{T}{\epsilon}≤K<\frac{2(1+{\rm e}^{-T})}{1-{\rm e}^{-T}}
ϵT≤K<1−e−T2(1+e−T)
已知采样系统结构图如下图所示,其中: T = 1 , a = ln 2 , b = ln 4 , K > 0 T=1,a=\ln2,b=\ln4,K>0 T=1,a=ln2,b=ln4,K>0。要求:

解:
稳定性分析。
开环传递函数为:
G
(
s
)
=
K
(
s
+
a
)
(
s
+
b
)
=
K
b
−
a
(
1
s
+
a
−
1
s
+
b
)
G(s)=\frac{K}{(s+a)(s+b)}=\frac{K}{b-a}\left(\frac{1}{s+a}-\frac{1}{s+b}\right)
G(s)=(s+a)(s+b)K=b−aK(s+a1−s+b1)
开环脉冲传递函数为:
G
(
z
)
=
K
b
−
a
(
z
z
−
e
−
a
T
−
z
z
−
e
−
b
T
)
=
K
b
−
a
z
(
e
−
a
T
−
e
−
b
T
)
(
z
−
e
−
a
T
)
(
z
−
e
−
b
T
)
G(z)=\frac{K}{b-a}\left(\frac{z}{z-{\rm e}^{-aT}}-\frac{z}{z-{\rm e}^{-bT}}\right)=\frac{K}{b-a}\frac{z({\rm e}^{-aT}-{\rm e}^{-bT})}{(z-{\rm e}^{-aT})(z-{\rm e}^{-bT})}
G(z)=b−aK(z−e−aTz−z−e−bTz)=b−aK(z−e−aT)(z−e−bT)z(e−aT−e−bT)
代入
T
=
1
,
a
=
ln
2
,
b
=
ln
4
T=1,a=\ln2,b=\ln4
T=1,a=ln2,b=ln4,有:
b
−
a
=
ln
4
−
ln
2
=
ln
2
,
e
−
a
T
=
e
−
ln
2
=
1
2
,
e
−
a
T
=
e
−
ln
4
=
1
4
,
e
−
a
T
−
e
−
b
T
=
1
4
b-a=\ln4-\ln2=\ln2,{\rm e}^{-aT}={\rm e}^{-\ln2}=\frac{1}{2},{\rm e}^{-aT}={\rm e}^{-\ln4}=\frac{1}{4},{\rm e}^{-aT}-{\rm e}^{-bT}=\frac{1}{4}
b−a=ln4−ln2=ln2,e−aT=e−ln2=21,e−aT=e−ln4=41,e−aT−e−bT=41
可得:
G
(
z
)
=
K
4
ln
2
⋅
z
(
z
−
1
2
)
(
z
−
1
4
)
G(z)=\frac{K}{4\ln2}·\frac{z}{\left(z-\displaystyle\frac{1}{2}\right)\left(z-\displaystyle\frac{1}{4}\right)}
G(z)=4ln2K⋅(z−21)(z−41)z
闭环特征方程为:
D
(
z
)
=
(
z
−
1
2
)
(
z
−
1
4
)
+
K
4
ln
2
z
=
0
⇒
D
(
z
)
=
z
2
+
(
K
4
ln
2
−
3
4
)
z
+
1
8
=
0
D(z)=\left(z-\displaystyle\frac{1}{2}\right)\left(z-\displaystyle\frac{1}{4}\right)+\frac{K}{4\ln2}z=0\Rightarrow{D(z)}=z^2+\left(\frac{K}{4\ln2}-\frac{3}{4}\right)z+\frac{1}{8}=0
D(z)=(z−21)(z−41)+4ln2Kz=0⇒D(z)=z2+(4ln2K−43)z+81=0
令
z
=
w
+
1
w
−
1
z=\displaystyle\frac{w+1}{w-1}
z=w−1w+1,代入特征方程可得:
D
(
w
)
=
(
K
4
ln
2
+
3
8
)
w
2
+
7
4
w
+
(
15
8
−
K
4
ln
2
)
=
0
D(w)=\left(\frac{K}{4\ln2}+\frac{3}{8}\right)w^2+\frac{7}{4}w+\left(\frac{15}{8}-\frac{K}{4\ln2}\right)=0
D(w)=(4ln2K+83)w2+47w+(815−4ln2K)=0
闭环系统稳定的充要条件为:
K
4
ln
2
+
3
8
>
0
,
15
8
−
K
4
ln
2
>
0
⇒
0
<
K
<
5.20
\frac{K}{4\ln2}+\frac{3}{8}>0,\frac{15}{8}-\frac{K}{4\ln2}>0\Rightarrow0
求稳态误差。
由
r
(
t
)
=
1
(
t
)
⇒
R
(
z
)
=
z
z
−
1
r(t)=1(t)\Rightarrow{R(z)}=\frac{z}{z-1}
r(t)=1(t)⇒R(z)=z−1z
故误差
z
z
z变换为:
E
(
z
)
=
1
G
(
z
)
R
(
z
)
=
z
(
z
−
1
2
)
(
z
−
1
4
)
[
(
z
−
1
2
)
(
z
−
1
4
)
+
K
4
ln
2
z
]
(
z
−
1
)
E(z)=\frac{1}{G(z)}R(z)=\frac{z\left(z-\displaystyle\frac{1}{2}\right)\left(z-\displaystyle\frac{1}{4}\right)}{\left[\left(z-\displaystyle\frac{1}{2}\right)\left(z-\displaystyle\frac{1}{4}\right)+\displaystyle\frac{K}{4\ln2}z\right](z-1)}
E(z)=G(z)1R(z)=[(z−21)(z−41)+4ln2Kz](z−1)z(z−21)(z−41)
由终值定理可得,稳态误差为:
e
s
s
(
∞
)
=
lim
z
→
1
(
z
−
1
)
E
(
z
)
=
lim
z
→
1
z
(
z
−
1
2
)
(
z
−
1
4
)
[
(
z
−
1
2
)
(
z
−
1
4
)
+
K
4
ln
2
z
]
=
3
3
+
2
K
ln
2
=
3
3
+
2.89
K
e_{ss}(\infty)=\lim_{z\to1}(z-1)E(z)=\lim_{z\to1}\frac{z\left(z-\displaystyle\frac{1}{2}\right)\left(z-\displaystyle\frac{1}{4}\right)}{\left[\left(z-\displaystyle\frac{1}{2}\right)\left(z-\displaystyle\frac{1}{4}\right)+\displaystyle\frac{K}{4\ln2}z\right]}=\frac{3}{3+\displaystyle\frac{2K}{\ln2}}=\frac{3}{3+2.89K}
ess(∞)=z→1lim(z−1)E(z)=z→1lim[(z−21)(z−41)+4ln2Kz]z(z−21)(z−41)=3+ln22K3=3+2.89K3
其中,
K
K
K的范围为:
0
<
K
<
5.20
0