高级架构师_Elasticsearch_第二章kibana+IK分词器安装+索引操作+ 映射操作
Elasticsearch是基于Lucene的全文检索引擎,本质也是存储和检索数据。ES中的很多概念与MySQL类 似 我们可以按照关系型数据库的经验去理解。
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-types.html#multi fields_2
| 关系型数据库(比如Mysql) | 非关系型数据库(Elasticsearch) |
|---|---|
| 数据库Database | 索引Index |
| 表Table | 索引Index类型(原为Type) |
| 数据行Row | 文档Document |
| 数据列Column | 字段Field |
| 约束 Schema | 映射Mapping |
Elasticsearch提供了Rest风格的API,即http请求接口,而且也提供了各种语言的客户端API。
Rest风格API
文档地址:https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html

客户端API
Elasticsearch支持的语言客户端非常多:https://www.elastic.co/guide/en/elasticsearch/client/i
ndex.html,我们在实战时将使用到Java客户端API

ElasticSearch没有自带图形化界面,我们可以通过安装ElasticSearch的图形化插件,完成图形化界面的 效果,完成索引数据的查看,比如可视化插件Kibana。
Kibana是一个基于Node.js的Elasticsearch索引库数据统计工具,可以利用Elasticsearch的聚合功
能,生成各种图表,如柱形图,线状图,饼图等。
而且还提供了操作Elasticsearch索引数据的控制台,并且提供了一定的API提示,非常有利于我们学习
Elasticsearch的语法。



root账户下操作
tar -zxvf kibana-7.3.0-linux-x86_64.tar.gz
mv /root/kibana-7.3.0-linux-x86_64 /usr/kibana/
改变es目录拥有者账号
chown -R estest /usr/kibana/
还需要设置访问权限
chmod -R 777 /usr/kibana/
修改配置文件
vim /usr/kibana/config/kibana.yml
修改端口,访问ip,elasticsearch服务器ip
server.port: 5601
server.host: "0.0.0.0"
# The URLs of the Elasticsearch instances to use for all your queries. elasticsearch.hosts: ["http://192.168.211.136:9200"]
配置完成启动:
切换用户
su estest
./bin/kibana(路径:/usr/kibana)
没有error错误启动成功:

选择左侧的DevTools菜单,即可进入控制台页面:


在页面右侧,我们就可以输入请求,访问Elasticsearch了。

IKAnalyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包。从2006年12月推出1.0版 开始,IKAnalyzer已经推出 了3个大版本。最初,它是以开源项目Lucene为应用主体的,结合词典分词和文法分析算法的中文分词组件。新版本的IKAnalyzer3.0则发展为 面向Java的公用分词组件,独立于Lucene项目,同时提供了对Lucene的默认优化实现。
IK分词器3.0的特性如下:
下载插件并安装(安装方式一)
1)在elasticsearch的bin目录下执行以下命令,es插件管理器会自动帮我们安装,然后等待安装完成:
cd /usr/elasticsearch/bin/elasticsearch-plugin install
https://github.com/medcl/elasticsearch-analysisik/
releases/download/v7.3.0/elasticsearch-analysis-ik-7.3.0.zip
2)下载完成后会提示 Continue with installation?输入 y 即可完成安装
3)重启Elasticsearch 和Kibana
上传安装包安装 (安装方式二)
1)在elasticsearch安装目录的plugins目录下新建 analysis-ik 目录
#新建analysis-ik文件夹
mkdir analysis-ik
#切换至 analysis-ik文件夹下
cd analysis-ik
#上传资料中的 elasticsearch-analysis-ik-7.3.0.zip
#解压
unzip elasticsearch-analysis-ik-7.3.3.zip
#解压完成后删除zip
rm -rf elasticsearch-analysis-ik-7.3.0.zip
2) 重启Elasticsearch 和Kibana
测试案例
IK分词器有两种分词模式:ik_max_word和ik_smart模式。
1)ik_max_word (常用)
会将文本做最细粒度的拆分
2)ik_smart
会做最粗粒度的拆分
大家先不管语法,我们先在Kibana测试一波输入下面的请求:
POST _analyze
{
"analyzer": "ik_max_word",
"text": "南京市长江大桥"
}
ik_max_word 分词模式运行得到结果:
{
"tokens": [{
"token": "南京市", "start_offset": 0,
"end_offset": 3, "type": "CN_WORD",
"position": 0
},
{
"token": "南京", "start_offset": 0,
"end_offset": 2, "type": "CN_WORD",
"position": 1
},
{
"token": "市长", "start_offset": 2,
"end_offset": 4, "type": "CN_WORD",
"position": 2
},
{
"token": "长江大桥", "start_offset": 3,
"end_offset": 7, "type": "CN_WORD",
"position": 3
},
{
"token": "长江", "start_offset": 3,
"end_offset": 5, "type": "CN_WORD",
"position": 4
},
{
"token": "大桥", "start_offset": 5,
"end_offset": 7, "type": "CN_WORD",
"position": 5
}
]
}
POST _analyze
{
"analyzer": "ik_smart",
"text": "南京市长江大桥"
}
ik_smart分词模式运行得到结果:
{
"tokens": [
{
"token": "南京市",
"start_offset": 0,
"end_offset": 3,
"type": "CN_WORD",
"position": 0
},
{
"token": "长江大桥",
"start_offset": 3,
"end_offset": 7,
"type": "CN_WORD",
"position": 1
}
]
}
如果现在假如江大桥是一个人名,是南京市市长,那么上面的分词显然是不合理的,该怎么办?
扩展词:就是不想让哪些词被分开,让他们分成一个词。比如上面的江大桥
自定义扩展词库
1)进入到 config/analysis-ik/(插件命令 安装方式) 或 plugins/analysis-ik/config(安装包安装方式) 目录下, 新增自定义词典
vim lagou_ext_dict.dic
输入 :江大桥
2)将我们自定义的扩展词典文件添加到IKAnalyzer.cfg.xml配置中
vim IKAnalyzer.cfg.xml
DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置comment>
<entry key="ext_dict">lagou_ext_dict.dicentry>
<entry key="ext_stopwords">lagou_stop_dict.dicentry>
properties>
3)重启Elasticsearch
停用词:有些词在文本中出现的频率非常高。但对本文的语义产生不了多大的影响。例如英文的a、 an、the、of等。或中文的”的、了、呢等”。这样的词称为停用词。停用词经常被过滤掉,不会被进行 索引。在检索的过程中,如果用户的查询词中含有停用词,系统会自动过滤掉。停用词可以加快索引的 速度,减少索引库文件的大小。
1) 进入到 config/analysis-ik/(插件命令安装方式) 或 plugins/analysis-ik/config(安装包安装方式) 目录下, 新增自定义词典
vim lagou_stop_dict.dic
输入
的
了
啊
2)将我们自定义的停用词典文件添加到IKAnalyzer.cfg.xml配置中
3)重启Elasticsearch
语言博大精深,有很多相同意思的词,我们称之为同义词,比如“番茄”和“西红柿”,“馒头”和“馍”等。在 搜索的时候,我们输入的可能是“番茄”,但是应该把含有“西红柿”的数据一起查询出来,这种情况叫做 同义词查询。
注意:扩展词和停用词是在索引的时候使用,而同义词是检索时候使用。
Elasticsearch 自带一个名为 synonym 的同义词 filter。为了能让 IK 和 synonym 同时工作,我们需要定义新的 analyzer,用 IK 做 tokenizer,synonym 做 filter。听上去很复杂,实际上要做的只是加一段配置。
1)创建/config/analysis-ik/synonym.txt 文件,输入一些同义词并存为 utf-8 格式。例如
lagou,拉勾
china,中国
2)创建索引时,使用同义词配置,示例模板如下
PUT /索引名称
{
"settings": {
"analysis": {
"filter": {
"word_sync": {
"type": "synonym",
"synonyms_path": "analysis-ik/synonym.txt"
}
},
"analyzer": {
"ik_sync_max_word": {
"filter": [
"word_sync"
],
"type": "custom",
"tokenizer": "ik_max_word"
},
"ik_sync_smart": {
"filter": [
"word_sync"
],
"type": "custom",
"tokenizer": "ik_smart"
}
}
}
},
"mappings": {
"properties": {
"字段名": {
"type": "字段类型",
"analyzer": "ik_sync_smart",
"search_analyzer": "ik_sync_smart"
}
}
}
}
以上配置定义了ik_sync_max_word和ik_sync_smart这两个新的 analyzer,对应 IK 的 ik_max_word 和ik_smart 两种分词策略。ik_sync_max_word和 ik_sync_smart都会使用 synonym filter 实现同义词转换
3)到此,索引创建模板中同义词配置完成,搜索时指定分词为ik_sync_max_word或ik_sync_smart。
4)案例
PUT /lagou-es-synonym
{
"settings": {
"analysis": {
"filter": {
"word_sync": {
"type": "synonym",
"synonyms_path": "analysis-ik/synonym.txt"
}
},
"analyzer": {
"ik_sync_max_word": {
"filter": [
"word_sync"
],
"type": "custom",
"tokenizer": "ik_max_word"
},
"ik_sync_smart": {
"filter": [
"word_sync"
],
"type": "custom",
"tokenizer": "ik_smart"
}
}
}
},
"mappings": {
"properties": {
"name": {
"type": "text",
"analyzer": "ik_sync_max_word",
"search_analyzer": "ik_sync_max_word"
}
}
}
}
插入数据
POST /lagou-es-synonym/_doc/1
{
"name":"拉勾是中国专业的互联网招聘平台"
}
使用同义词"lagou"或者“china”进行搜索
POST /lagou-es-synonym/_doc/_search
{
"query": {
"match": {
"name": "lagou"
}
}
}

Elasticsearch采用Rest风格API,因此其API就是一次http请求,你可以用任何工具发起http请求
语法
PUT /索引名称
{
"settings": {
"属性名": "属性值"
}
}
settings:就是索引库设置,其中可以定义索引库的各种属性 比如分片数 副本数等,目前我们可以不设置,都走默认
示例
PUT /lagou-company-index

可以看到索引创建成功了。
语法
HEAD /索引名称
示例 HEAD /lagou-company-index

Get请求可以帮我们查看索引的相关属性信息,格式:
GET /索引名称
示例 GET /lagou-company-index

GET /索引名称1,索引名称2,索引名称3,...

查看所有索引
方式一
GET _all

方式二
GET /_cat/indices?v

语法
POST /索引名称/_open

语法
POST /索引名称/_close

删除索引使用DELETE请求
语法
DELETE /索引名称1,索引名称2,索引名称3...
示例

再次查看,返回索引不存在

索引创建之后,等于有了关系型数据库中的database。Elasticsearch7.x取消了索引type类型的设置, 不允许指定类型,默认为_doc,但字段仍然是有的,我们需要设置字段的约束信息,叫做字段映射(mapping)
字段的约束包括但不限于:
我们一起来看下创建的语法。
语法

https://www.elastic.co/guide/en/elasticsearch/reference/7.3/mapping-params.html
字段名:任意填写,下面指定许多属性,例如:
示例
发起请求:
PUT /lagou-company-index
PUT /lagou-company-index/_mapping/
{
"properties": {
"name": {
"type": "text",
"analyzer": "ik_max_word"
},
"job": {
"type": "text",
"analyzer": "ik_max_word"
},
"logo": {
"type": "keyword",
"index": "false"
},
"payment": {
"type": "float"
}
}
}
响应结果:

上述案例中,就给lagou-company-index这个索引库设置了4个字段:
并且给这些字段设置了一些属性,至于这些属性对应的含义,我们在后续会详细介绍。
1)type
Elasticsearch中支持的数据类型非常丰富:

https://www.elastic.co/guide/en/elasticsearch/reference/7.3/mapping-types.html
我们说几个关键的:
tring类型,又分两种: text:
可分词,不可参与聚合
keyword:不可分词,数据会作为完整字段进行匹配,可以参与聚合
Numerical:数值类型,分两类
基本数据类型:long、interger、short、byte、double、float、half_float
浮点数的高精度类型:scaled_float
需要指定一个精度因子,比如10或100。elasticsearch会把真实值乘以这个因子后存储,取出时再原。
Date:日期类型
elasticsearch可以对日期格式化为字符串存储,但是建议我们存储为毫秒值,存储为long,节省空间。
Array:数组类型
进行匹配时,任意一个元素满足,都认为满足
排序时,如果升序则用数组中的最小值来排序,如果降序则用数组中的最大值来排序
Object:对象
{
"name": "Jack",
"age": 21,
"girl": {
"name": "Rose",
"age": 21
}
}
如果存储到索引库的是对象类型,例如上面的girl,会把girl变成两个字段:girl.name和girl.age 2)
index
index影响字段的索引情况。
true:字段会被索引,则可以用来进行搜索。默认值就是true
false:字段不会被索引,不能用来搜索
index的默认值就是true,也就是说你不进行任何配置,所有字段都会被索引。
但是有些字段是我们不希望被索引的,比如企业的logo图片地址,就需要手动设置index为false。