• CNN卷积层:ReLU函数


    卷积层的非线性部分

    一、ReLU定义

    ReLU:全称 Rectified Linear Units)激活函数

    定义

    def relu(x):

      return x if x >0 else 0

    二、传统sigmoid系激活函数

    Sigmoid与人的神经反应很相似,在很多浅层模型上发挥巨大作用

    传统神经网络中最常用的两个激活函数,Sigmoid系(Logistic-Sigmoid、Tanh-Sigmoid)被视为神经网络的核心所在。

    从数学上来看,非线性的Sigmoid函数对中央区的信号增益较大,对两侧区的信号增益小,在信号的特征空间映射上,有很好的效果。

    从神经科学上来看,中央区酷似神经元的兴奋态,两侧区酷似神经元的抑制态,因而在神经网络学习方面,可以将重点特征推向中央区,将非重点特征推向两侧区。

    无论是哪种解释,看起来都比早期的线性激活函数(y=x),阶跃激活函数(-1/1,0/1)高明了不少。

    梯度消失问题

     sigmoid导数值的范围(0,  0.25)

    tanh的导数值范围(0, 1)

    可以看出sigmoid的弱点:对于深度网络,sigmoid在最好的情况下也会把传递的导数数值缩小至0.25倍,下层网络得到的梯度值明显小很多。这会导致模型训练效果很差。

    对于浅层网络这种影响不明显,但对于深度网络,反向传导逐渐变成了一个“漫长累积”的过程。

    从训练效果看,以不同激活函数的LeNet模型,训练迭代数与Loss的关系——

    sigmoid明显弱一些,tanh与ReLU相近

    ReLU的优点:没有出现梯度消失问题

    三、ReLU的线性性质

    作为一个非线性函数,它还具备线性性质

         1 0 0

       [ 0 1 0 ]  x 向量

         0 0 0

  • 相关阅读:
    Ubuntu18.04运行gazebo的launch文件[model-4] process has died报错
    SWC ports and port interface
    骨传导耳机是怎么传声的?骨传导耳机会伤害耳朵吗?
    ICDE 2023|TKDE Poster Session(CFP)
    数据结构专项-字符串
    每日OJ题_剑指offer数组篇
    mybatis写sql
    基于megengine实现YoloX【附部分源码】
    JVM知识点总结
    `英语` 2022/8/12
  • 原文地址:https://blog.csdn.net/m0_72495985/article/details/127667893