看守所视频AI行为分析依据yolo5识别检测算法,YOLOv5是一个在COCO数据集上预训练的物体检测架构和模型系列,它代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。
现如今在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。
CSPNet和PRN都是一个思想,将feature map拆成两个部分,一部分进行卷积操作,另一部分和上一部分卷积操作的结果进行concate在网络的颈部,采用的是:FPN+PAN结构,进行丰富的特征融合,这一部分和YOLOv4的结构相同。

import os
from torch.utils.data import Dataset
from utils import *
from torchvision import transforms
transform = transforms.Compose([
transforms.ToTensor()
])
class MyDataset(Dataset):
def __init__(self, path):
self.path = path
self.name = os.listdir(os.path.join(path, 'notedata'))
def __len__(self):
return len(self.name)
def __getitem__(self, index):
segment_name = self.name[index] #XX.png
segment_path = os.path.join(self.path, 'notedata', segment_name)