Applied here to extract the middle-level featuresof input person images
we apply ResNet-50 as our basic convolution layer,but remove the last block of ResNet-50,our basic convolution layer only consists of the con1, res2, res3 and res4 blocks. Fig. 3
3.2 Multi-Scale Stream Layer
在三个尺度上分别是1个3x3的过滤器,2个级联的3x3过滤器,3个级联的3x3过滤器
开始有一个1x1卷积层压缩和提炼关键特征,最后另一个1x1卷积层将特征图恢复到原始的通道数。
TABLE 1,Details of the Multi-Scale Stream Layer
3.3 Leader-Based Attention Learning Layer
Question:the resulting data channels at different scales may have redundant information Solution:利用基于领导者的注意学习机制来引导多尺度流层的输出,并自动发现和强调具有更有区别性特征的通道 Fig. 4, Fi 是第 i 个数据流的特征图