• Yolov5:强大到你难以想象──新冠疫情下的口罩检测


    初识Yolov5是看到一个视频可以检测街道上所有的行人,并实时框选出来。之后学习了CNN卷积神经网络,在完成一个项目需求时,发现卷积神经网络在切割图像方面仍然不太好用。于是我想到了之前看到的Yolov5,实战后不禁感慨一句:真的太强大了!它比“R-CNN”快1000倍,比“Fast R-CNN”快100倍!You Only Look Once,这个被称为“暗网”的国外的开源项目,目标就是让计算机识得世间万物。接下来,跟随我的脚步,一起来看看这篇《基于Yolov5的口罩检测》文章吧!

    目录

    一、Yolov5简介

    二、项目背景

    三、检测效果

    四、数据集处理 

    五、结果分析

    六、总结

    七、模型代码(部分)


    一、Yolov5简介

     2020年6月25日,Ultralytics发布了YOLOV5 的第一个正式版本,其性能与YOLO V4不相伯仲,同样也是现今最先进的对象检测技术,并在推理速度上是目前最强,yolov5按大小分为四个模型yolov5s、yolov5m、yolov5l、yolov5x。其中的复杂的网络结构、数学基础在这里就不一一介绍(太复杂,笔者也只能看个大概,很难说清楚),在这里,引用另一个博主的Yolov5的网络结构图:Yolov5网络结构图,以及一篇流程图:Yolov5操作流程图watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L25hbjM1NTY1NTYwMA==,size_16,color_FFFFFF,t_70#pic_center

     2021090914151250.jpg

    YOLOv5是YOLO系列的一个延申,您也可以看作是基于YOLOv3、YOLOv4的改进作品。YOLOv5没有相应的论文说明,但是作者在Github上积极地开放源代码,通过对源码分析,我们也能很快地了解YOLOv5的网络架构和工作原理。


     二、项目背景

    当前新冠疫情仍然严重,在公众场合需要佩戴口罩已经成为常识。新型冠状病毒的主要传播途径就是飞沫传播,戴上口罩就可以有效的阻隔病毒的传播。口罩是预防呼吸道传染病的重要防线,可以降低新型冠状病毒感染风险。口罩不仅可以防止病人喷射飞沫,降低飞沫量和喷射速度,还可以阻挡含病毒的飞沫核,防止佩戴者吸入。有研究显示,只要双方都佩戴口罩且间隔1.8米以上,造成感染的几率几乎为0。

    64d9b4458dc545bcb55349e8b208dfaa.jpeg

    但是,在我们周围总有人不喜欢戴口罩,无论是进出商场、教室、街道、地下停车场等公共场所,还是在人员密集的会议室里,他们都不喜欢口罩的“束缚”。运用Yolov5训练出来的口罩检测模型进行检测,就能准确实时的找到哪些人带了口罩、哪些人没带。可以做的定点提醒,或者是阻止他出入公共场所。节省了人力,大幅提高效率。

    三、检测效果

    因为我是拿CPU运行的,速度很慢,epoch取了5次,即每张图片学习了5次,一共有1200组训练数据,训练了三个半小时,之后在项目的实际应用的时候会考虑修改为GPU运行,这样速度可以提高很多。我们直接看模型的检测效果及视频的检测效果:

     9e42ce2955da4d1982b2953fb275d4a6.jpeg

    106e1ebe89604484843da43ba9aaa10d.jpeg

      4e40d2efb9b84ccbb6b43fafb9409040.jpeg

     b0946ca62f5640d599a93084bbe44daf.gif

     通过上述例子可以看到,仅经过五次学习,识别的精度已经很高了,再一次感叹Yolov5的强大!

    四、数据集处理 添加标签

    训练的数据集总共有1200张戴口罩的和没戴口罩的照片,验证集有400张照片,对应的标签也已经存在相应的文件夹下。这里重点讲解下数据集标签的标注,我觉得这是Yolov5特别亲民的一个地方,也是他的强大之处——你可以标记你任何想标记的地方!

    e87ec3757f2c463a8629546cb8e7ddbf.png

    可以在你的虚拟环境中进入labelImg,这是他的界面。左侧open Dir可以打开数据集的文件夹,Change Save Dir是你的保存路径,Next和Prev Image分别是上一张和下一张图片。重点来了:Create RectBox绘制一个矩形框将你需要框选的对象框选出来,并添加标签。我这里框选了红色衣服的女士,并给她添加标签mask,说明她带了口罩。接着标记第二个人,直到所有的人都标记完之后,可以得到一个该图片的txt文件:

    f963fc099add4ec0b1b2c08b06d96b8a.png

    我们一行一行看,每一行代表着图片里面的一个人,第一个数字 0说明是第一类,在这里就是带了口罩,后两个数字是矩形框的的中心点坐标,最后两个数字是矩形框的长宽。在训练模型时要将原图片和对应的标签一起传入进去作为一组训练集,这样机器才能够慢慢认识一个人有没有戴口罩。

     五、结果分析

    29e0eb9174284f6da1838a7104da54a3.png10fa39b20900480ca8b559bd506768fa.png 

    acf6ca0af1064512a0c4438c815e6fa2.png 7e464e580f684b8593a63f1a6b8842f3.png 

    f73f3558373f4dd2945249f591c59093.png 082e2406fa2645b79070e00af9d846e1.png

    从图中可以看出,仅训练了5次(即每张图片机器学习了5遍), 对mask的识别精度可以达到0.564,对face的识别精度可以达到0.904,实在是恐怖!

    六、总结

    Yolov5真的是一个利器,确实要比CNN强大很多,里面复杂的神经网络函数复杂交错。这个开源项目让我再一次感受到了机器学习的强大,你可以让计算机认出他任何想要认出的东西,且识别的精度很高。比如说

    • 火灾检测,一片森林或楼道只要一有火焰的模样,计算机就能分辨出并报警,这样可以有效地减少经济损失甚至挽救生命。
    • 安检检测,现在的地铁飞机安检,都是人观察扫描仪扫描出来的图像,看有没有可疑物体,如果用Yolov5训练出识别危险物品的模型,就能减少大量人力,且准确率可能比人还要高。
    • 无人驾驶。通过yolov5检测车道和行人车辆,控制整个车子运转,只要有足够多的数据集,这个领域还是很值得探索的。

    这次实战让我深深明白了:人工智能 = 人工+智能,先有人工才有智能,人工筛选标注数据集甚至会比搭建整个机器学习框架所用的时间更长,数据集的宝贵一不言而喻。每天我们看似习以为常的图片验证码(选出图片中的红绿灯)其实都在把我们当成他们免费的劳动力,在帮他们给图片添加标签,哈哈。未来的世界很广阔,人工智能的世界依旧很精彩,继续加油!如果你对本篇文章感兴趣也欢迎私信或者评论区交流哦! 

    想要继续深入研究的小伙伴可以看这几个文章:

    手把手教你使用YOLOV5训练自己的目标检测模型-口罩检测-视频教程

    手把手教你使用YOLOV5训练自己的目标检测模型

    电脑是如何学会瞬间识别物体的

     七、模型代码(部分)

    源于博主肆十二:手把手教你使用YOLOV5训练自己的目标检测模型,链接如上

    训练模型:

    1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
    2. """
    3. Train a YOLOv5 model on a custom dataset
    4. Usage:
    5. $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
    6. """
    7. import argparse
    8. import math
    9. import os
    10. import random
    11. import sys
    12. import time
    13. from copy import deepcopy
    14. from datetime import datetime
    15. from pathlib import Path
    16. import numpy as np
    17. import torch
    18. import torch.distributed as dist
    19. import torch.nn as nn
    20. import yaml
    21. from torch.cuda import amp
    22. from torch.nn.parallel import DistributedDataParallel as DDP
    23. from torch.optim import SGD, Adam, lr_scheduler
    24. from tqdm import tqdm
    25. FILE = Path(__file__).resolve()
    26. ROOT = FILE.parents[0] # YOLOv5 root directory
    27. if str(ROOT) not in sys.path:
    28. sys.path.append(str(ROOT)) # add ROOT to PATH
    29. ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
    30. import val # for end-of-epoch mAP
    31. from models.experimental import attempt_load
    32. from models.yolo import Model
    33. from utils.autoanchor import check_anchors
    34. from utils.autobatch import check_train_batch_size
    35. from utils.callbacks import Callbacks
    36. from utils.datasets import create_dataloader
    37. from utils.downloads import attempt_download
    38. from utils.general import (LOGGER, NCOLS, check_dataset, check_file, check_git_status, check_img_size,
    39. check_requirements, check_suffix, check_yaml, colorstr, get_latest_run, increment_path,
    40. init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods,
    41. one_cycle, print_args, print_mutation, strip_optimizer)
    42. from utils.loggers import Loggers
    43. from utils.loggers.wandb.wandb_utils import check_wandb_resume
    44. from utils.loss import ComputeLoss
    45. from utils.metrics import fitness
    46. from utils.plots import plot_evolve, plot_labels
    47. from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, torch_distributed_zero_first
    48. LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
    49. RANK = int(os.getenv('RANK', -1))
    50. WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
    51. def train(hyp, # path/to/hyp.yaml or hyp dictionary
    52. opt,
    53. device,
    54. callbacks
    55. ):
    56. save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze, = \
    57. Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
    58. opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
    59. # Directories
    60. w = save_dir / 'weights' # weights dir
    61. (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
    62. last, best = w / 'last.pt', w / 'best.pt'
    63. # Hyperparameters
    64. if isinstance(hyp, str):
    65. with open(hyp, errors='ignore') as f:
    66. hyp = yaml.safe_load(f) # load hyps dict
    67. LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
    68. # Save run settings
    69. with open(save_dir / 'hyp.yaml', 'w') as f:
    70. yaml.safe_dump(hyp, f, sort_keys=False)
    71. with open(save_dir / 'opt.yaml', 'w') as f:
    72. yaml.safe_dump(vars(opt), f, sort_keys=False)
    73. data_dict = None
    74. # Loggers
    75. if RANK in [-1, 0]:
    76. loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
    77. if loggers.wandb:
    78. data_dict = loggers.wandb.data_dict
    79. if resume:
    80. weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp
    81. # Register actions
    82. for k in methods(loggers):
    83. callbacks.register_action(k, callback=getattr(loggers, k))
    84. # Config
    85. plots = not evolve # create plots
    86. cuda = device.type != 'cpu'
    87. init_seeds(1 + RANK)
    88. with torch_distributed_zero_first(LOCAL_RANK):
    89. data_dict = data_dict or check_dataset(data) # check if None
    90. train_path, val_path = data_dict['train'], data_dict['val']
    91. nc = 1 if single_cls else int(data_dict['nc']) # number of classes
    92. names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
    93. assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
    94. is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
    95. # Model
    96. check_suffix(weights, '.pt') # check weights
    97. pretrained = weights.endswith('.pt')
    98. if pretrained:
    99. with torch_distributed_zero_first(LOCAL_RANK):
    100. weights = attempt_download(weights) # download if not found locally
    101. ckpt = torch.load(weights, map_location=device) # load checkpoint
    102. model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
    103. exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
    104. csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
    105. csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
    106. model.load_state_dict(csd, strict=False) # load
    107. LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
    108. else:
    109. model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
    110. # Freeze
    111. freeze = [f'model.{x}.' for x in range(freeze)] # layers to freeze
    112. for k, v in model.named_parameters():
    113. v.requires_grad = True # train all layers
    114. if any(x in k for x in freeze):
    115. LOGGER.info(f'freezing {k}')
    116. v.requires_grad = False
    117. # Image size
    118. gs = max(int(model.stride.max()), 32) # grid size (max stride)
    119. imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
    120. # Batch size
    121. if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
    122. batch_size = check_train_batch_size(model, imgsz)
    123. # Optimizer
    124. nbs = 64 # nominal batch size
    125. accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
    126. hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
    127. LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
    128. g0, g1, g2 = [], [], [] # optimizer parameter groups
    129. for v in model.modules():
    130. if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias
    131. g2.append(v.bias)
    132. if isinstance(v, nn.BatchNorm2d): # weight (no decay)
    133. g0.append(v.weight)
    134. elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)
    135. g1.append(v.weight)
    136. if opt.adam:
    137. optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
    138. else:
    139. optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
    140. optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) # add g1 with weight_decay
    141. optimizer.add_param_group({'params': g2}) # add g2 (biases)
    142. LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
    143. f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias")
    144. del g0, g1, g2
    145. # Scheduler
    146. if opt.linear_lr:
    147. lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
    148. else:
    149. lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
    150. scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
    151. # EMA
    152. ema = ModelEMA(model) if RANK in [-1, 0] else None
    153. # Resume
    154. start_epoch, best_fitness = 0, 0.0
    155. if pretrained:
    156. # Optimizer
    157. if ckpt['optimizer'] is not None:
    158. optimizer.load_state_dict(ckpt['optimizer'])
    159. best_fitness = ckpt['best_fitness']
    160. # EMA
    161. if ema and ckpt.get('ema'):
    162. ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
    163. ema.updates = ckpt['updates']
    164. # Epochs
    165. start_epoch = ckpt['epoch'] + 1
    166. if resume:
    167. assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
    168. if epochs < start_epoch:
    169. LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
    170. epochs += ckpt['epoch'] # finetune additional epochs
    171. del ckpt, csd
    172. # DP mode
    173. if cuda and RANK == -1 and torch.cuda.device_count() > 1:
    174. LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
    175. 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
    176. model = torch.nn.DataParallel(model)
    177. # SyncBatchNorm
    178. if opt.sync_bn and cuda and RANK != -1:
    179. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
    180. LOGGER.info('Using SyncBatchNorm()')
    181. # Trainloader
    182. train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
    183. hyp=hyp, augment=True, cache=opt.cache, rect=opt.rect, rank=LOCAL_RANK,
    184. workers=workers, image_weights=opt.image_weights, quad=opt.quad,
    185. prefix=colorstr('train: '), shuffle=True)
    186. mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class
    187. nb = len(train_loader) # number of batches
    188. assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
    189. # Process 0
    190. if RANK in [-1, 0]:
    191. val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls,
    192. hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1,
    193. workers=workers, pad=0.5,
    194. prefix=colorstr('val: '))[0]
    195. if not resume:
    196. labels = np.concatenate(dataset.labels, 0)
    197. # c = torch.tensor(labels[:, 0]) # classes
    198. # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
    199. # model._initialize_biases(cf.to(device))
    200. if plots:
    201. plot_labels(labels, names, save_dir)
    202. # Anchors
    203. if not opt.noautoanchor:
    204. check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
    205. model.half().float() # pre-reduce anchor precision
    206. callbacks.run('on_pretrain_routine_end')
    207. # DDP mode
    208. if cuda and RANK != -1:
    209. model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
    210. # Model attributes
    211. nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
    212. hyp['box'] *= 3 / nl # scale to layers
    213. hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
    214. hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
    215. hyp['label_smoothing'] = opt.label_smoothing
    216. model.nc = nc # attach number of classes to model
    217. model.hyp = hyp # attach hyperparameters to model
    218. model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
    219. model.names = names
    220. # Start training
    221. t0 = time.time()
    222. nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
    223. # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
    224. last_opt_step = -1
    225. maps = np.zeros(nc) # mAP per class
    226. results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
    227. scheduler.last_epoch = start_epoch - 1 # do not move
    228. scaler = amp.GradScaler(enabled=cuda)
    229. stopper = EarlyStopping(patience=opt.patience)
    230. compute_loss = ComputeLoss(model) # init loss class
    231. LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
    232. f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
    233. f"Logging results to {colorstr('bold', save_dir)}\n"
    234. f'Starting training for {epochs} epochs...')
    235. for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
    236. model.train()
    237. # Update image weights (optional, single-GPU only)
    238. if opt.image_weights:
    239. cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
    240. iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
    241. dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
    242. # Update mosaic border (optional)
    243. # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
    244. # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
    245. mloss = torch.zeros(3, device=device) # mean losses
    246. if RANK != -1:
    247. train_loader.sampler.set_epoch(epoch)
    248. pbar = enumerate(train_loader)
    249. LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
    250. if RANK in [-1, 0]:
    251. pbar = tqdm(pbar, total=nb, ncols=NCOLS, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
    252. optimizer.zero_grad()
    253. for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
    254. ni = i + nb * epoch # number integrated batches (since train start)
    255. imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
    256. # Warmup
    257. if ni <= nw:
    258. xi = [0, nw] # x interp
    259. # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
    260. accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
    261. for j, x in enumerate(optimizer.param_groups):
    262. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
    263. x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
    264. if 'momentum' in x:
    265. x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
    266. # Multi-scale
    267. if opt.multi_scale:
    268. sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
    269. sf = sz / max(imgs.shape[2:]) # scale factor
    270. if sf != 1:
    271. ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
    272. imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
    273. # Forward
    274. with amp.autocast(enabled=cuda):
    275. pred = model(imgs) # forward
    276. loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
    277. if RANK != -1:
    278. loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
    279. if opt.quad:
    280. loss *= 4.
    281. # Backward
    282. scaler.scale(loss).backward()
    283. # Optimize
    284. if ni - last_opt_step >= accumulate:
    285. scaler.step(optimizer) # optimizer.step
    286. scaler.update()
    287. optimizer.zero_grad()
    288. if ema:
    289. ema.update(model)
    290. last_opt_step = ni
    291. # Log
    292. if RANK in [-1, 0]:
    293. mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
    294. mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
    295. pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (
    296. f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
    297. callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn)
    298. # end batch ------------------------------------------------------------------------------------------------
    299. # Scheduler
    300. lr = [x['lr'] for x in optimizer.param_groups] # for loggers
    301. scheduler.step()
    302. if RANK in [-1, 0]:
    303. # mAP
    304. callbacks.run('on_train_epoch_end', epoch=epoch)
    305. ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
    306. final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
    307. if not noval or final_epoch: # Calculate mAP
    308. results, maps, _ = val.run(data_dict,
    309. batch_size=batch_size // WORLD_SIZE * 2,
    310. imgsz=imgsz,
    311. model=ema.ema,
    312. single_cls=single_cls,
    313. dataloader=val_loader,
    314. save_dir=save_dir,
    315. plots=False,
    316. callbacks=callbacks,
    317. compute_loss=compute_loss)
    318. # Update best mAP
    319. fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
    320. if fi > best_fitness:
    321. best_fitness = fi
    322. log_vals = list(mloss) + list(results) + lr
    323. callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
    324. # Save model
    325. if (not nosave) or (final_epoch and not evolve): # if save
    326. ckpt = {'epoch': epoch,
    327. 'best_fitness': best_fitness,
    328. 'model': deepcopy(de_parallel(model)).half(),
    329. 'ema': deepcopy(ema.ema).half(),
    330. 'updates': ema.updates,
    331. 'optimizer': optimizer.state_dict(),
    332. 'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None,
    333. 'date': datetime.now().isoformat()}
    334. # Save last, best and delete
    335. torch.save(ckpt, last)
    336. if best_fitness == fi:
    337. torch.save(ckpt, best)
    338. if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0):
    339. torch.save(ckpt, w / f'epoch{epoch}.pt')
    340. del ckpt
    341. callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
    342. # Stop Single-GPU
    343. if RANK == -1 and stopper(epoch=epoch, fitness=fi):
    344. break
    345. # Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576
    346. # stop = stopper(epoch=epoch, fitness=fi)
    347. # if RANK == 0:
    348. # dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks
    349. # Stop DPP
    350. # with torch_distributed_zero_first(RANK):
    351. # if stop:
    352. # break # must break all DDP ranks
    353. # end epoch ----------------------------------------------------------------------------------------------------
    354. # end training -----------------------------------------------------------------------------------------------------
    355. if RANK in [-1, 0]:
    356. LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
    357. for f in last, best:
    358. if f.exists():
    359. strip_optimizer(f) # strip optimizers
    360. if f is best:
    361. LOGGER.info(f'\nValidating {f}...')
    362. results, _, _ = val.run(data_dict,
    363. batch_size=batch_size // WORLD_SIZE * 2,
    364. imgsz=imgsz,
    365. model=attempt_load(f, device).half(),
    366. iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65
    367. single_cls=single_cls,
    368. dataloader=val_loader,
    369. save_dir=save_dir,
    370. save_json=is_coco,
    371. verbose=True,
    372. plots=True,
    373. callbacks=callbacks,
    374. compute_loss=compute_loss) # val best model with plots
    375. if is_coco:
    376. callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
    377. callbacks.run('on_train_end', last, best, plots, epoch, results)
    378. LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
    379. torch.cuda.empty_cache()
    380. return results
    381. # 明天把这些模型都试试效果先,一波波给他训练完毕,找个公开的数据集测试一下。
    382. def parse_opt(known=False):
    383. parser = argparse.ArgumentParser()
    384. parser.add_argument('--weights', type=str, default=ROOT / 'pretrained/yolov5s.pt', help='initial weights path')
    385. parser.add_argument('--cfg', type=str, default=ROOT / 'models/yolov5s.yaml', help='model.yaml path')
    386. parser.add_argument('--data', type=str, default=ROOT / 'data/data.yaml', help='dataset.yaml path')
    387. parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch.yaml', help='hyperparameters path')
    388. parser.add_argument('--epochs', type=int, default=300)
    389. parser.add_argument('--batch-size', type=int, default=4, help='total batch size for all GPUs, -1 for autobatch')
    390. parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
    391. parser.add_argument('--rect', action='store_true', help='rectangular training')
    392. parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
    393. parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
    394. parser.add_argument('--noval', action='store_true', help='only validate final epoch')
    395. parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
    396. parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
    397. parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    398. parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
    399. parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
    400. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    401. # parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
    402. parser.add_argument('--multi-scale', default=True, help='vary img-size +/- 50%%')
    403. parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
    404. parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
    405. parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
    406. parser.add_argument('--workers', type=int, default=0, help='max dataloader workers (per RANK in DDP mode)')
    407. parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
    408. parser.add_argument('--name', default='exp', help='save to project/name')
    409. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    410. parser.add_argument('--quad', action='store_true', help='quad dataloader')
    411. parser.add_argument('--linear-lr', action='store_true', help='linear LR')
    412. parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
    413. parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
    414. parser.add_argument('--freeze', type=int, default=0, help='Number of layers to freeze. backbone=10, all=24')
    415. parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
    416. parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
    417. # Weights & Biases arguments
    418. parser.add_argument('--entity', default=None, help='W&B: Entity')
    419. parser.add_argument('--upload_dataset', action='store_true', help='W&B: Upload dataset as artifact table')
    420. parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
    421. parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')
    422. opt = parser.parse_known_args()[0] if known else parser.parse_args()
    423. return opt
    424. def main(opt, callbacks=Callbacks()):
    425. # Checks
    426. if RANK in [-1, 0]:
    427. print_args(FILE.stem, opt)
    428. check_git_status()
    429. check_requirements(exclude=['thop'])
    430. # Resume
    431. if opt.resume and not check_wandb_resume(opt) and not opt.evolve: # resume an interrupted run
    432. ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
    433. assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
    434. with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f:
    435. opt = argparse.Namespace(**yaml.safe_load(f)) # replace
    436. opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate
    437. LOGGER.info(f'Resuming training from {ckpt}')
    438. else:
    439. opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
    440. check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
    441. assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
    442. if opt.evolve:
    443. opt.project = str(ROOT / 'runs/evolve')
    444. opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
    445. opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
    446. # DDP mode
    447. device = select_device(opt.device, batch_size=opt.batch_size)
    448. if LOCAL_RANK != -1:
    449. assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
    450. assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
    451. assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'
    452. assert not opt.evolve, '--evolve argument is not compatible with DDP training'
    453. torch.cuda.set_device(LOCAL_RANK)
    454. device = torch.device('cuda', LOCAL_RANK)
    455. dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
    456. # Train
    457. if not opt.evolve:
    458. train(opt.hyp, opt, device, callbacks)
    459. if WORLD_SIZE > 1 and RANK == 0:
    460. LOGGER.info('Destroying process group... ')
    461. dist.destroy_process_group()
    462. # Evolve hyperparameters (optional)
    463. else:
    464. # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
    465. meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
    466. 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
    467. 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
    468. 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
    469. 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
    470. 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
    471. 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
    472. 'box': (1, 0.02, 0.2), # box loss gain
    473. 'cls': (1, 0.2, 4.0), # cls loss gain
    474. 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
    475. 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
    476. 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
    477. 'iou_t': (0, 0.1, 0.7), # IoU training threshold
    478. 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
    479. 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
    480. 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
    481. 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
    482. 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
    483. 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
    484. 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
    485. 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
    486. 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
    487. 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
    488. 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
    489. 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
    490. 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
    491. 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
    492. 'mixup': (1, 0.0, 1.0), # image mixup (probability)
    493. 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
    494. with open(opt.hyp, errors='ignore') as f:
    495. hyp = yaml.safe_load(f) # load hyps dict
    496. if 'anchors' not in hyp: # anchors commented in hyp.yaml
    497. hyp['anchors'] = 3
    498. opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
    499. # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
    500. evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
    501. if opt.bucket:
    502. os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {save_dir}') # download evolve.csv if exists
    503. for _ in range(opt.evolve): # generations to evolve
    504. if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
    505. # Select parent(s)
    506. parent = 'single' # parent selection method: 'single' or 'weighted'
    507. x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
    508. n = min(5, len(x)) # number of previous results to consider
    509. x = x[np.argsort(-fitness(x))][:n] # top n mutations
    510. w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
    511. if parent == 'single' or len(x) == 1:
    512. # x = x[random.randint(0, n - 1)] # random selection
    513. x = x[random.choices(range(n), weights=w)[0]] # weighted selection
    514. elif parent == 'weighted':
    515. x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
    516. # Mutate
    517. mp, s = 0.8, 0.2 # mutation probability, sigma
    518. npr = np.random
    519. npr.seed(int(time.time()))
    520. g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
    521. ng = len(meta)
    522. v = np.ones(ng)
    523. while all(v == 1): # mutate until a change occurs (prevent duplicates)
    524. v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
    525. for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
    526. hyp[k] = float(x[i + 7] * v[i]) # mutate
    527. # Constrain to limits
    528. for k, v in meta.items():
    529. hyp[k] = max(hyp[k], v[1]) # lower limit
    530. hyp[k] = min(hyp[k], v[2]) # upper limit
    531. hyp[k] = round(hyp[k], 5) # significant digits
    532. # Train mutation
    533. results = train(hyp.copy(), opt, device, callbacks)
    534. # Write mutation results
    535. print_mutation(results, hyp.copy(), save_dir, opt.bucket)
    536. # Plot results
    537. plot_evolve(evolve_csv)
    538. LOGGER.info(f'Hyperparameter evolution finished\n'
    539. f"Results saved to {colorstr('bold', save_dir)}\n"
    540. f'Use best hyperparameters example: $ python train.py --hyp {evolve_yaml}')
    541. def run(**kwargs):
    542. # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
    543. opt = parse_opt(True)
    544. for k, v in kwargs.items():
    545. setattr(opt, k, v)
    546. main(opt)
    547. # python train.py --data mask_data.yaml --cfg mask_yolov5s.yaml --weights pretrained/yolov5s.pt --epoch 100 --batch-size 4 --device cpu
    548. # python train.py --data mask_data.yaml --cfg mask_yolov5l.yaml --weights pretrained/yolov5l.pt --epoch 100 --batch-size 4
    549. # python train.py --data mask_data.yaml --cfg mask_yolov5m.yaml --weights pretrained/yolov5m.pt --epoch 100 --batch-size 4
    550. if __name__ == "__main__":
    551. opt = parse_opt()
    552. main(opt)

  • 相关阅读:
    前端工作总结100-vue中name错误
    基于Springboot+Vue实现前后端分离商城管理系统
    halcon学习和实践(svm模型训练实战)
    2.RabbitMQ安装
    IEEE802系列协议知识点总结
    Linux单节点安装K8S和kubesphere 已验证安装成功
    练[MRCTF2020]套娃
    java基于Springboot+vue的宠物销售商城网站 elementui
    博客系统(SSM)
    如何在响应头中防治xss
  • 原文地址:https://blog.csdn.net/weixin_63866037/article/details/127629146