一提到python爬虫,词云图,就头大,我们就从简单开始,一步一步进行
此代码只对python的基本框架进行描述
- # -*- coding: utf-8 -*-#
- #基本框架
-
- #一、库的引用
- from bs4 import BeautifulSoup # 网页解析,获取数据
- import re # 正则表达式,进行文字匹配
- import urllib.request, urllib.error # 制定URL,获取网页数据
- #二、主函数
- def main():
- a = 1
- # 爬取网页,获取数据
- baseurl = "https://news.163.com/"
- Datelist = getDate(baseurl)
- #保存
- savepath = ".\\新闻2.xls"
- saveDate(savepath, Datelist, a)
-
- # 三、爬网页
- def getDate(baseurl, a):
- datelist = [] #存为列表
- #四、保存
- def saveDate(savepath, Datelist, a):
- print("...")
-
- if __name__ == "__main__":
- main()
爬取网页首先我们需要获取网页链接,我们定义一个函数名字叫做:askURL(url)
爬取了网页接下来我们需要的就是获取网页内容,我们写一个叫做 getData(baseUrl)的函数
- from bs4 import BeautifulSoup # 网页解析,获取数据
- import urllib.request, urllib.error # 制定URL,获取网页数据
-
- def main():
- a = 1
- # 爬取网页,获取数据
- baseurl = "https://news.163.com/"
- Datelist, a = getDate(baseurl, a)
-
- savepath = ".\\新闻2.xls"
- saveDate(savepath, Datelist, a)
-
- # 得到指定URL的网页内容
- def askURL(url):
- head = {
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36 Edge/18.17763"}
- # 模拟浏览器头部信息,向服务器发送消息
- request = urllib.request.Request(url, headers=head)
- html = "" #字符串存
-
- try:
- response = urllib.request.urlopen(request)
- html = response.read().decode("utf-8", 'ignore')
- print(html)
-
- except urllib.error.URLError as e:
- if hasattr(e, "code"):
- print(e.code)
- if hasattr(e, "reason"):
- print(e.reason)
- return html
- #爬网页
- def getDate(baseurl, a):
- datelist = [] #存为列表
- html = askURL(baseurl)
- soup = BeautifulSoup(html, "html.parser")
- return datelist, a
-
- #保存
- def saveDate(savepath, Datelist, a):
- print("...")
-
-
- if __name__ == "__main__":
- main()
实现了如图所示的代码,但是数据很杂乱且庞大,我们还需做到数据的清洗

- # -*- coding: utf-8 -*-#
- from bs4 import BeautifulSoup # 网页解析,获取数据
- import re # 正则表达式,进行文字匹配
- import urllib.request, urllib.error # 制定URL,获取网页数据
-
- def main():
- a = 1
- # 爬取网页,获取数据
- baseurl = "https://news.163.com/"
- Datelist, a = getDate(baseurl, a)
-
- savepath = ".\\新闻2.xls"
- saveDate(savepath, Datelist, a)
-
- # 得到指定URL的网页内容
- def askURL(url):
- head = {
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36 Edge/18.17763"}
- # 模拟浏览器头部信息,向服务器发送消息
- request = urllib.request.Request(url, headers=head)
- html = "" #字符串存
-
- try:
- response = urllib.request.urlopen(request)
- html = response.read().decode("utf-8", 'ignore')
- # print(html)
-
- except urllib.error.URLError as e:
- if hasattr(e, "code"):
- print(e.code)
- if hasattr(e, "reason"):
- print(e.reason)
- return html
- #爬网页
- def getDate(baseurl, a):
- datelist = [] #存为列表
- html = askURL(baseurl)
- soup = BeautifulSoup(html, "html.parser")
- for item in soup.select(".hidden"): # 查找符合要求的字符串,形成列表
-
- for c in item.select('a'):
- print(c)
- return datelist, a
-
- #保存
- def saveDate(savepath, Datelist, a):
- print("...")
-
-
- if __name__ == "__main__":
- main()

爬取到了数据接下来我们需要保存数据(这里我们采取保存数据到excel中)
- # -*- coding: utf-8 -*-#
- from bs4 import BeautifulSoup # 网页解析,获取数据
- import re # 正则表达式,进行文字匹配
- import urllib.request, urllib.error # 制定URL,获取网页数据
- import xlwt # 进行excel操作
-
- def main():
- a = 1
- # 爬取网页,获取数据
- baseurl = "https://news.163.com/"
- Datelist, a = getDate(baseurl, a)
-
- savepath = "新闻2.xls"
- saveDate(savepath, Datelist, a)
-
- # 得到指定URL的网页内容
- def askURL(url):
- head = {
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36 Edge/18.17763"}
- # 模拟浏览器头部信息,向服务器发送消息
- request = urllib.request.Request(url, headers=head)
- html = "" #字符串存
-
- try:
- response = urllib.request.urlopen(request)
- html = response.read().decode("utf-8", 'ignore')
- # print(html)
-
- except urllib.error.URLError as e:
- if hasattr(e, "code"):
- print(e.code)
- if hasattr(e, "reason"):
- print(e.reason)
- return html
-
- findlink = re.compile(r'')
- findjs = re.compile(r'">(.*)')
-
- #爬网页
- def getDate(baseurl, a):
- datelist = [] #存为列表
- html = askURL(baseurl)
- soup = BeautifulSoup(html, "html.parser")
-
- for item in soup.select(".hidden"): # 查找符合要求的字符串,形成列表
- for c in item.select('a'):
- #print(c)
- date = []
- c = str(c)
- Js = findjs.findall(c)
- date.append(Js)
- Link = findlink.findall(c)
- date.append(Link[0])
- date.append('')
- Html = askURL(Link[0])
- Soup = BeautifulSoup(Html, "html.parser")
- for item1 in Soup.select(".post_body"):
- date.insert(2, item1.get_text().strip())
-
- print("已保存第%.3d条新闻数据" % a)
- a += 1
- datelist.append(date)
- return datelist, a
-
- #保存
- def saveDate(savepath, Datelist, a):
- book = xlwt.Workbook(encoding="utf-8", style_compression=0) # 创建workbook对象
- sheet = book.add_sheet(savepath, cell_overwrite_ok=True) # 创建工作表
- crl = ("新闻标题", "新闻链接", "新闻内容")
- for i in range(0, len(crl)):
- sheet.write(0, i, crl[i])
- for i in range(1, a):
- for j in range(0, len(crl)):
- sheet.write(i, j, Datelist[i - 1][j])
- print("保存完毕")
- book.save(savepath)
-
- if __name__ == "__main__":
- main()

使用时需要引用wordcloud 和 matplotlib,具体的效果图如下
- from wordcloud import WordCloud
- import matplotlib.pyplot as plt
-
- #打开文本
- text=open('头条新闻.txt',encoding="utf-8").read()
-
- #生成
- #字体地址,图片长宽,背景颜色
- wc=WordCloud(font_path='C:\Windows\Fonts\msyh.ttc',width=800,height=600,mode="RGBA",background_color='white').generate(text)
-
- #显示
- plt.imshow(wc)
- plt.axis("off")#消除坐标
- plt.show()
-
- #保存
- wc.to_file("2.wordcloud2.png")
再进一步
虽然已经制作出了词云图,但长长的句子并不是我们的本意,我们得引入分词模块
- from wordcloud import WordCloud
- import matplotlib.pyplot as plt
- import jieba
-
- #打开文本
- text=open('头条新闻.txt',encoding="utf-8").read()
- #中文分词
- text=' '.join(jieba.cut(text))#形成列表,将列表里的词用空格分开并拼成长字符串
- #生成
- #字体地址,图片长宽,背景颜色
- wc=WordCloud(font_path='C:\Windows\Fonts\msyh.ttc',width=800,height=600,mode="RGBA",background_color='white').generate(text)
- #显示
- plt.imshow(wc)
- plt.axis("off")#消除坐标
- plt.show()
- #保存
- wc.to_file("2.wordcloud2.png")

👍🏻点赞,你的认可是我创作的动力!
⭐收藏,你的青睐是我努力的方向!
✏️评论,你的意见是我进步的财富!