• 工厂人员违规行为识别系统


    工厂人员违规行为识别借助yolov5深度学习框架技术,YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使得其速度与精度都得到了极大的性能提升,具体包括:输入端的Mosaic数据增强、自适应锚框计算、自适应图片缩放操作;基准端的Focus结构与CSP结构;Neck端的SPP与FPN+PAN结构;输出端的损失函数GIOU_Loss以及预测框筛选的DIOU_nms。

     

    在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。 
    FPN是自顶向下,将高层的强语义特征传递下来,对整个金字塔进行增强,不过只增强了语义信息,对定位信息没有传递。PAN就是针对这一点,在FPN的后面添加一个自底向上的金字塔,对FPN补充,将低层的强定位特征传递上去,又被称之为“双塔战术”。

    public abstract void registerDataSetObserver (DataSetObserver observer) 
    Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。

    public abstract void unregisterDataSetObserver (DataSetObserver observer) 
    通过调用unregisterDataSetObserver方法,反注册观察者。

    public abstract int getCount () 
    返回Adapter中数据的数量。

    public abstract Object getItem (int position) 
    Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。

    public abstract boolean hasStableIds () 
    hasStableIds表示当数据源发生了变化的时候,原有数据项的id会不会发生变化,如果返回true表示Id不变,返回false表示可能会变化。Android所提供的Adapter的子类(包括直接子类和间接子类)的hasStableIds方法都返回false。

  • 相关阅读:
    几个网站的百度收录都被清空,对方这是什么操作?怎么破?
    【计算机网络】3 数据包抓取与分析
    【JVM笔记】GC的吞吐量与暂停时间
    达梦数据库相关SQL及适配Mysql配置总结
    MySQL分组查询
    Golang基础 流程控制 条件判断
    电脑老系统怎么换新系统?
    微信小程序-读取数据
    高德地图点击搜索触发输入提示
    相机类型的分辨率长宽、靶面尺寸大小、像元大小汇总
  • 原文地址:https://blog.csdn.net/KO_159/article/details/127626956