• UNet++详细解读(二)pytorch从头开始搭建UNet++


    Unet++代码

    网络架构

    请添加图片描述

    黑色部分是Backbone,是原先的UNet。

    绿色箭头为上采样,蓝色箭头为密集跳跃连接。

    绿色的模块为密集连接块,是经过左边两个部分拼接操作后组成的

    Backbone

    2个3x3的卷积,padding=1。

    class VGGBlock(nn.Module):
        def __init__(self, in_channels, middle_channels, out_channels):
            super().__init__()
            self.relu = nn.ReLU(inplace=True)
            self.conv1 = nn.Conv2d(in_channels, middle_channels, 3, padding=1)
            self.bn1 = nn.BatchNorm2d(middle_channels)
            self.conv2 = nn.Conv2d(middle_channels, out_channels, 3, padding=1)
            self.bn2 = nn.BatchNorm2d(out_channels)
    
        def forward(self, x):
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
    
            out = self.conv2(out)
            out = self.bn2(out)
            out = self.relu(out)
    
            return out
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    上采样

    图中的绿色箭头,上采样使用双线性插值。

    双线性插值就是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值

    请添加图片描述

    torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None)
    
    • 1

    参数说明:
    ①size:可以用来指定输出空间的大小,默认是None;
    ②scale_factor:比例因子,比如scale_factor=2意味着将输入图像上采样2倍,默认是None;
    ③mode:用来指定上采样算法,有’nearest’、 ‘linear’、‘bilinear’、‘bicubic’、‘trilinear’,默认是’nearest’。上采样算法在本文中会有详细理论进行讲解;
    ④align_corners:如果True,输入和输出张量的角像素对齐,从而保留这些像素的值,默认是False。此处True和False的区别本文中会有详细的理论讲解;
    ⑤recompute_scale_factor:如果recompute_scale_factor是True,则必须传入scale_factor并且scale_factor用于计算输出大小。计算出的输出大小将用于推断插值的新比例。请注意,当scale_factor为浮点数时,由于舍入和精度问题,它可能与重新计算的scale_factor不同。如果recompute_scale_factor是False,那么size或scale_factor将直接用于插值。

    class Up(nn.Module):
        def __init__(self):
            super().__init__()
            self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
    
        def forward(self, x1, x2):
            x1 = self.up(x1)
            # input is CHW
            diffY = torch.tensor([x2.size()[2] - x1.size()[2]])
            diffX = torch.tensor([x2.size()[3] - x1.size()[3]])
    
            x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
                            diffY // 2, diffY - diffY // 2])
            x = torch.cat([x2, x1], dim=1)
            return x
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    下采样

    图中的黑色箭头,采用的是最大池化。

    self.pool = nn.MaxPool2d(2, 2)
    
    • 1

    深度监督

    所示,该结构下有4个分支,可以分为两种模式。

    精确模式:4个分支取平均值结果

    快速模式:只选择一个分支,其余被剪枝

    if self.deep_supervision:
       output1 = self.final1(x0_1)
       output2 = self.final2(x0_2)
       output3 = self.final3(x0_3)
       output4 = self.final4(x0_4)
       return [output1, output2, output3, output4]
    
    else:
        output = self.final(x0_4)
         return output
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    网络架构代码

    class NestedUNet(nn.Module):
        def __init__(self, num_classes=1, input_channels=1, deep_supervision=False, **kwargs):
            super().__init__()
    
            nb_filter = [32, 64, 128, 256, 512]
    
            self.deep_supervision = deep_supervision
    
            self.pool = nn.MaxPool2d(2, 2)
            self.up = Up()
      
            self.conv0_0 = VGGBlock(input_channels, nb_filter[0], nb_filter[0])
            self.conv1_0 = VGGBlock(nb_filter[0], nb_filter[1], nb_filter[1])
            self.conv2_0 = VGGBlock(nb_filter[1], nb_filter[2], nb_filter[2])
            self.conv3_0 = VGGBlock(nb_filter[2], nb_filter[3], nb_filter[3])
            self.conv4_0 = VGGBlock(nb_filter[3], nb_filter[4], nb_filter[4])
    
            self.conv0_1 = VGGBlock(nb_filter[0]+nb_filter[1], nb_filter[0], nb_filter[0])
            self.conv1_1 = VGGBlock(nb_filter[1]+nb_filter[2], nb_filter[1], nb_filter[1])
            self.conv2_1 = VGGBlock(nb_filter[2]+nb_filter[3], nb_filter[2], nb_filter[2])
            self.conv3_1 = VGGBlock(nb_filter[3]+nb_filter[4], nb_filter[3], nb_filter[3])
    
            self.conv0_2 = VGGBlock(nb_filter[0]*2+nb_filter[1], nb_filter[0], nb_filter[0])
            self.conv1_2 = VGGBlock(nb_filter[1]*2+nb_filter[2], nb_filter[1], nb_filter[1])
            self.conv2_2 = VGGBlock(nb_filter[2]*2+nb_filter[3], nb_filter[2], nb_filter[2])
    
            self.conv0_3 = VGGBlock(nb_filter[0]*3+nb_filter[1], nb_filter[0], nb_filter[0])
            self.conv1_3 = VGGBlock(nb_filter[1]*3+nb_filter[2], nb_filter[1], nb_filter[1])
    
            self.conv0_4 = VGGBlock(nb_filter[0]*4+nb_filter[1], nb_filter[0], nb_filter[0])
    
            if self.deep_supervision:
                self.final1 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
                self.final2 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
                self.final3 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
                self.final4 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
            else:
                self.final = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
    
    
        def forward(self, input):
            x0_0 = self.conv0_0(input)
            x1_0 = self.conv1_0(self.pool(x0_0))
            x0_1 = self.conv0_1(self.up(x1_0, x0_0))
    
            x2_0 = self.conv2_0(self.pool(x1_0))
            x1_1 = self.conv1_1(self.up(x2_0, x1_0))
            x0_2 = self.conv0_2(self.up(x1_1, torch.cat([x0_0, x0_1], 1)))
    
            x3_0 = self.conv3_0(self.pool(x2_0))
            x2_1 = self.conv2_1(self.up(x3_0, x2_0))   
            x1_2 = self.conv1_2(self.up(x2_1, torch.cat([x1_0, x1_1], 1)))
            x0_3 = self.conv0_3(self.up(x1_2, torch.cat([x0_0, x0_1, x0_2], 1)))
    
            x4_0 = self.conv4_0(self.pool(x3_0))
            x3_1 = self.conv3_1(self.up(x4_0, x3_0))
            x2_2 = self.conv2_2(self.up(x3_1, torch.cat([x2_0, x2_1], 1)))
            x1_3 = self.conv1_3(self.up(x2_2, torch.cat([x1_0, x1_1, x1_2], 1)))
            x0_4 = self.conv0_4(self.up(x1_3, torch.cat([x0_0, x0_1, x0_2, x0_3], 1)))
    
            if self.deep_supervision:
                output1 = self.final1(x0_1)
                output2 = self.final2(x0_2)
                output3 = self.final3(x0_3)
                output4 = self.final4(x0_4)
                return [output1, output2, output3, output4]
    
            else:
                output = self.final(x0_4)
                return output
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
  • 相关阅读:
    时间复杂度吐血总结
    你真正了解什么是接口测试么?接口实战一“篇”入魂
    mysql5.7.35安装配置教程【超级详细安装教程】
    大数据Presto(四):Presto自定义函数和JDBC连接
    [Pytorch] 保存模型与加载模型
    Windows OpenGL ES 图像对比度调节
    【算法与数据结构】--目录
    深度学习最终BOSS——TensorRT
    内存管理——C++
    FlashAttention2原理解析以及面向AIGC的加速实践
  • 原文地址:https://blog.csdn.net/qq128252/article/details/127610581