• Java多线程(6):锁与AQS(中)


    您好,我是湘王,这是我的CSDN博客,欢迎您来,欢迎您再来~

    Java中的AQS(AbstractQueuedSynchronizer,抽象队列同步器)是用来实现锁及其他同步功能组件的Java底层技术基础,java.util.concurrent包下大部分类的实现都离不开它。

    通过继承AQS:

    1、ReentrantLock的内部类实现了公平锁和非公平锁;

    2、CountDownLatch的内部类实现了发令枪;

    3、ReentrantReadWriteLock的内部类实现了独享锁和共享锁;

    4、Semaphore的内部类实现了公平锁和非公平锁。

    AQS主要实现两大功能:独占(Exclusive,有时也叫排他)和共享(Share)。

    AQS在内部维护一个FIFO(First In First Out,先进先出)的CLH(Craig,Landin,and Hagersten)线程阻塞队列和一个资源同步状态的变量volatile int state。

    CLH是一个虚拟的双向队列,也就是不存在队列实例,仅存在节点之间的关联关系的队列。AQS是将每一条请求共享资源的线程,封装成一个CLH线程队列节点(Node),从而实现锁的分配。因此,说了一大堆,用一句简单的话来形容AQS就是:基于CLH线程阻塞队列,通过volatile变量 + CAS + 自旋方式来改变线程状态,成功则获取锁,失败则进入CLH队列。

    AQS已经实现了CLH线程阻塞队列的维护,所以一般子类自定义实现AQS,要么是独占,要么是共享,也就是要么实现tryAcquire()和tryRelease()等系列方法,要么实现tryAcquireShared()和tryReleaseShared()等系列方法。

    CLH队列由多个node节点组成,而且大量使用“CAS自旋volatile变量”这种经典代码:

     

    CLH队列的结构为:

     

    给CLH设置首节点:

     

    给CLH设置尾节点:

     

    整个AQS的流程如图:

     

    AQS特别复杂,如果想把多线程搞透的,就需要深入研究每个方法的流程,拿acquire(int)方法的执行流程为例:

     

    我把AQS的源码做了较为详细的注释,可以结合注释看看:

    1. /**
    2. * Provides a framework for implementing blocking locks and related
    3. * synchronizers (semaphores, events, etc) that rely on first-in-first-out
    4. * (FIFO) wait queues. 提供了一个实现阻塞锁和依赖FIFO的等待队列的相关的同步器(信号灯、事件等)框架
    5. *
    6. * This class is designed to be a useful basis for most kinds of synchronizers
    7. * that rely on a single atomic {@code int} value to represent state.
    8. * 这个类对于大多数使用一个单独原子类的int值来表示状态的同步器很有用
    9. *
    10. * Subclasses must define the protected methods that change this state, and
    11. * which define what that state means in terms of this object being acquired or
    12. * released. 子类必须定义protected方法来改变这个状态值,并且定义状态值是获取还是释放对象
    13. *
    14. * Given these, the other methods in this class carry out all queuing and
    15. * blocking mechanics. 鉴于此,这个类中的其他方法实现了所有排队和阻塞的机制
    16. *
    17. * Subclasses can maintain other state fields, but only the atomically updated
    18. * {@code int} value manipulated using methods {@link #getState},
    19. * {@link #setState} and {@link #compareAndSetState} is tracked with respect to
    20. * synchronization. 子类可以维护其他的状态值字段,但只有getState、setState和compareAndSetState
    21. * 方法是通过原子更新来实现同步的
    22. *
    23. *

    24. * Subclasses should be defined as non-public internal helper classes that are
    25. * used to implement the synchronization properties of their enclosing class.
    26. * 子类应该定义成非public的内部helper工具类,用于实现其封闭类的同步属性
    27. *
    28. * Class {@code AbstractQueuedSynchronizer} does not implement any
    29. * synchronization interface. AbstractQueuedSynchronizer类没有实现任何同步接口
    30. *
    31. * Instead it defines methods such as {@link #acquireInterruptibly} that can be
    32. * invoked as appropriate by concrete locks and related synchronizers to
    33. * implement their public methods.
    34. * 取而代之的是,它定义了像acquireInterruptibly这样的方法,通过调用恰当的具体 锁和相关同步器方法,以便实现他们自己的公共方法
    35. *
    36. *

    37. * This class supports either or both a default exclusive mode and a
    38. * shared mode. 这个类既支持默认的独占模式,也支持共享模式,也支持两种模式一起实现
    39. *
    40. * When acquired in exclusive mode, attempted acquires by other threads cannot
    41. * succeed. 当在独占模式获取到锁时,其他线程再尝试获取锁会失败
    42. *
    43. * Shared mode acquires by multiple threads may (but need not) succeed.
    44. * 共享模式,多个线程都能成功获取到锁
    45. *
    46. * This class does not understand these differences except in the mechanical
    47. * sense that when a shared mode acquire succeeds, the next waiting thread (if
    48. * one exists) must also determine whether it can acquire as well.
    49. * 这个类不会理解机制的不同,共享模式中的一个线程获取锁成功了,下一个线程 (如果存在)仍然会去确定它自己是否也可以获取
    50. *
    51. * Threads waiting in the different modes share the same FIFO queue.
    52. * 线程虽在不同的模式中,却都在等待共享相同的FIFO队列
    53. *
    54. * Usually, implementation subclasses support only one of these modes, but both
    55. * can come into play for example in a {@link ReadWriteLock}.
    56. * 通常,子类只需要实现这两种模式中的一种,但也能两种都实现,例如ReadWriteLock
    57. *
    58. * Subclasses that support only exclusive or only shared modes need not define
    59. * the methods supporting the unused mode. 仅支持一种模式的子类,不必定义另一种模式下的方法
    60. *
    61. *

    62. * This class defines a nested {@link ConditionObject} class that can be used as
    63. * a {@link Condition} implementation by subclasses supporting exclusive mode
    64. * for which method {@link#isHeldExclusively} reports whether synchronization is
    65. * exclusively held with respect to the current thread, method {@link #release}
    66. * invoked with the current {@link #getState} value fully releases this object,
    67. * and {@link #acquire}, given this saved state value, eventually restores this
    68. * object to its previous acquired state.
    69. * 这个类定义了一个嵌套的ConditionObject类,该类可以被支持独占模式的子类用作
    70. * Condition实现,为此,isHeldExclusively()报告当前线程是否持续保持同步,
    71. * release方法通过调用getState来完全释放当前对象,并且将当前的资源状态 再保存到state中,最后会将此对象恢复为先前的获取状态
    72. *
    73. * No {@code AbstractQueuedSynchronizer} method otherwise creates such a
    74. * condition, so if this constraint cannot be met, do not use it.
    75. * 没有AbstractQueuedSynchronizer方法去创建condition,因此如果不能满足 这个约束,就不要使用它
    76. *
    77. * The behavior of {@link ConditionObject} depends of course on the semantics of
    78. * its synchronizer implementation. ConditionObject的行为依赖于其同步器实现的语义
    79. *
    80. *

    81. * This class provides inspection, instrumentation, and monitoring methods for
    82. * the internal queue, as well as similar methods for condition objects.
    83. * 这个类提供检查、追踪和监控内部队列的方法,类似于condition对象的方法
    84. *
    85. * These can be exported as desired into classes using an
    86. * {@code AbstractQueuedSynchronizer} for their synchronization mechanics.
    87. * 可以根据需要使用AbstractQueuedSynchronizer,将它们导入到类中以实现其同步机制
    88. *
    89. *

    90. * Serialization of this class stores only the underlying atomic integer
    91. * maintaining state, so deserialized objects have empty thread queues.
    92. * 这个类仅序列化state的原子值,因此反序列化出来的对象中的线程队列是空的
    93. *
    94. * Typical subclasses requiring serializability will define a {@code readObject}
    95. * method that restores this to a known initial state upon deserialization.
    96. * 需要序列化的子类可以在反序列化的时候定义一个readObject方法来恢复已知的初始状态
    97. *
    98. *
    99. *

      Usage

      使用
    100. *
    101. *

    102. * To use this class as the basis of a synchronizer, redefine the following
    103. * methods, as applicable, by inspecting and/or modifying the synchronization
    104. * state using {@link #getState}, {@link #setState} and/or
    105. * {@link #compareAndSetState}: 使用这个类作为同步器锁,需要重新定义以下方法:
    106. *
    107. *
      • *
      • {@link #tryAcquire}
    108. *
    109. {@link #tryRelease}
  • *
  • {@link #tryAcquireShared}
  • *
  • {@link #tryReleaseShared}
  • *
  • {@link #isHeldExclusively}
  • *
  • *
  • * Each of these methods by default throws
  • * {@link UnsupportedOperationException}.
  • * 这些方法默认抛出UnsupportedOperationException异常
  • *
  • * Implementations of these methods must be internally thread-safe, and should
  • * in general be short and not block. 这些方法的实现必须在内部是线程安全的,而且通常都很简短,没有阻塞
  • *
  • * Defining these methods is the only supported means of using this
  • * class. 定义这些方法是使用这个类唯一可行的方式
  • *
  • * All other methods are declared {@code final} because they cannot be
  • * independently varied. 所有其他的方法都被声明为final,因为他们无法独自变化
  • *
  • *

  • * You may also find the inherited methods from
  • * {@link AbstractOwnableSynchronizer} useful to keep track of the thread owning
  • * an exclusive synchronizer.
  • * 你可能也发现了继承自AbstractOwnableSynchronizer的方法对于跟踪拥有独占同步器的线程很有用
  • *
  • * You are encouraged to use them -- this enables monitoring and diagnostic
  • * tools to assist users in determining which threads hold locks.
  • * 鼓励你使用它们——这使得监控和诊断工具能够帮助用户确定那些线程持有锁
  • *
  • *

  • * Even though this class is based on an internal FIFO queue, it does not
  • * automatically enforce FIFO acquisition policies.
  • * 即使这个类是基于一个内部的FIFO队列,它也不会自动执行FIFO获得策略
  • *
  • * The core of exclusive synchronization takes the form: 独占锁的核心采用以下形式:
  • *
  • *
  • * Acquire方法:
  • * while (!tryAcquire(arg)) {
  • * enqueue thread if it is not already queued;
  • * 使线程入队,如果它还没有在队列中的话
  • * possibly block current thread;
  • * 可能会阻塞当前线程
  • * }
  • *
  • * Release方法:
  • * if (tryRelease(arg))
  • * unblock the first queued thread;
  • * 解锁队列中的第一个线程
  • *
  • *
  • * (Shared mode is similar but may involve cascading signals.) 共享模式类似,但可能涉及级联信号
  • *
  • *

  • * Because checks in acquire are invoked before enqueuing, a newly acquiring
  • * thread may barge ahead of others that are blocked and queued.
  • * 因为进入队列之前检查锁的获取,因此一个新的线程可能会插入其他阻塞或排队的线程之前
  • *
  • * However, you can, if desired, define {@code tryAcquire} and/or
  • * {@code tryAcquireShared} to disable barging by internally invoking one or
  • * more of the inspection methods, thereby providing a fair FIFO
  • * acquisition order. 但如果你愿意的话,可以定义tryAcquire和/或tryAcquireShared方法禁止插队,从而提供
  • * 一个公平的获取顺序
  • *
  • * In particular, most fair synchronizers can define {@code tryAcquire} to
  • * return {@code false} if {@link #hasQueuedPredecessors} (a method specifically
  • * designed to be used by fair synchronizers) returns {@code true}.
  • * 尤其是,如果hasQueuedPredecessors(专用于公平锁的方法)返回true,大多数公平锁 可以定义tryAcquire方法返回false
  • *
  • * Other variations are possible. 其他变化也是可能的
  • *
  • *

  • * Throughput and scalability are generally highest for the default barging
  • * (also known as greedy, renouncement, and
  • * convoy-avoidance) strategy.
  • * 对于默认插入(也称为greedy,renouncement和convoy-avoidance)策略, 吞吐量和可扩展性通常是最高的
  • *
  • * While this is not guaranteed to be fair or starvation-free, earlier queued
  • * threads are allowed to recontend before later queued threads, and each
  • * recontention has an unbiased chance to succeed against incoming threads.
  • * 尽管这不能保证公平,也不能保证没有饥饿,但是可以让较早排队的线程在较 晚排队的线程之前进行重新竞争
  • *
  • * Also, while acquires do not spin in the usual sense, they may perform
  • * multiple invocations of {@code tryAcquire} interspersed with other
  • * computations before blocking.
  • * 同样,尽管获得锁通常不会自旋,但它们在阻塞之前,可以执行多个对tryAcquire的调用与其他阻塞前的计算
  • *
  • * This gives most of the benefits of spins when exclusive synchronization is
  • * only briefly held, without most of the liabilities when it isn't.
  • * 这提供了自旋的大部分好处,而在不进行排他同步时,也不会带来很多负担
  • *
  • * If so desired, you can augment this by preceding calls to acquire methods
  • * with "fast-path" checks, possibly prechecking {@link #hasContended} and/or
  • * {@link #hasQueuedThreads} to only do so if the synchronizer is likely not to
  • * be contended. 如果需要,你可以通过在调用之前对获取方法进行“快速路径”检查来增强此功能,
  • * 可能会预先检查hasContended和/或hasQueuedThreads
  • *
  • *

  • * This class provides an efficient and scalable basis for synchronization in
  • * part by specializing its range of use to synchronizers that can rely on
  • * {@code int} state, acquire, and release parameters, and an internal FIFO wait
  • * queue. 此类为同步提供了有效且可扩展的基础,部分原因是依赖于使用state,获取和释放参数 以及内部FIFO等待队列的同步器
  • *
  • * When this does not suffice, you can build synchronizers from a lower level
  • * using {@link java.util.concurrent.atomic atomic} classes, your own custom
  • * {@link java.util.Queue} classes, and {@link LockSupport} blocking support.
  • * 如果这不够,你可以使用原子类、实现Queue接口和LockSupport提供低级别的阻塞支持
  • *
  • *

    Usage Examples

    使用示例
  • *
  • *

  • * Here is a non-reentrant mutual exclusion lock class that uses the value zero
  • * to represent the unlocked state, and one to represent the locked state.
  • * 这是一个非重入互斥独占锁类,使用0表示非锁定状态,1表示锁定状态
  • *
  • * While a non-reentrant lock does not strictly require recording of the current
  • * owner thread, this class does so anyway to make usage easier to monitor.
  • * 而非重入锁并不严格要求记录当前所有者线程,无论如何,这样做是为了更易于使用
  • *
  • * It also supports conditions and exposes one of the instrumentation methods:
  • * 它也支持conditions并公开了一种检测方法:
  • *
  • *
  • * {@code
  • * class Mutex implements Lock, java.io.Serializable {
  • *
  • * // Our internal helper class
  • * // 内部helper类
  • * private static class Sync extends AbstractQueuedSynchronizer {
  • * // Reports whether in locked state
  • * // 是否持有锁
  • * protected boolean isHeldExclusively() {
  • * return getState() == 1;
  • * }
  • *
  • * // Acquires the lock if state is zero
  • * // 如果state是0就获得锁
  • * public boolean tryAcquire(int acquires) {
  • * assert acquires == 1; // Otherwise unused 断言acquires=1,否则退出
  • * if (compareAndSetState(0, 1)) {
  • * setExclusiveOwnerThread(Thread.currentThread());
  • * return true;
  • * }
  • * return false;
  • * }
  • *
  • * // Releases the lock by setting state to zero
  • * // 通过设置state=0来释放锁
  • * protected boolean tryRelease(int releases) {
  • * assert releases == 1; // Otherwise unused 断言acquires=1,否则退出
  • * if (getState() == 0) throw new IllegalMonitorStateException();
  • * setExclusiveOwnerThread(null);
  • * setState(0);
  • * return true;
  • * }
  • *
  • * // Provides a Condition
  • * Condition newCondition() {
  • * return new ConditionObject();
  • * }
  • *
  • * // Deserializes properly
  • * // 反序列化
  • * private void readObject(ObjectInputStream s)
  • * throws IOException, ClassNotFoundException {
  • * s.defaultReadObject();
  • * setState(0); // reset to unlocked state
  • * }
  • * }
  • *
  • * // The sync object does all the hard work. We just forward to it.
  • * // 同步对象完成了所有困难的工作,我们只需要利用它实现下面的方法
  • *
  • * private final Sync sync = new Sync();
  • *
  • * public void lock() { sync.acquire(1); }
  • * public boolean tryLock() { return sync.tryAcquire(1); }
  • * public void unlock() { sync.release(1); }
  • * public Condition newCondition() { return sync.newCondition(); }
  • * public boolean isLocked() { return sync.isHeldExclusively(); }
  • * public boolean hasQueuedThreads() { return sync.hasQueuedThreads(); }
  • * public void lockInterruptibly() throws InterruptedException {
  • * sync.acquireInterruptibly(1);
  • * }
  • * public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException {
  • * return sync.tryAcquireNanos(1, unit.toNanos(timeout));
  • * }
  • * }}
  • *
  • *
  • *

  • * Here is a latch class that is like a
  • * {@link java.util.concurrent.CountDownLatch CountDownLatch} except that it
  • * only requires a single {@code signal} to fire.
  • * 这是一个和CountDownLatch类很像的latch类,除了它仅仅需要一个获取信号启动外
  • *
  • * Because a latch is non-exclusive, it uses the {@code shared} acquire and
  • * release methods. 因为latch类是一个非独占锁,它使用共享的获取和释放方法
  • *
  • *
  • * {
  • * @code
  • * class BooleanLatch {
  • *
  • * private static class Sync extends AbstractQueuedSynchronizer {
  • * boolean isSignalled() {
  • * return getState() != 0;
  • * }
  • *
  • * protected int tryAcquireShared(int ignore) {
  • * return isSignalled() ? 1 : -1;
  • * }
  • *
  • * protected boolean tryReleaseShared(int ignore) {
  • * setState(1);
  • * return true;
  • * }
  • * }
  • *
  • * private final Sync sync = new Sync();
  • *
  • * public boolean isSignalled() {
  • * return sync.isSignalled();
  • * }
  • *
  • * public void signal() {
  • * sync.releaseShared(1);
  • * }
  • *
  • * public void await() throws InterruptedException {
  • * sync.acquireSharedInterruptibly(1);
  • * }
  • * }
  • * }
  • *
  • *
  • * @since 1.5
  • * @author Doug Lea
  • */
  • public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable {
  • private static final long serialVersionUID = 7373984972572414691L;
  • /**
  • * Creates a new {@code AbstractQueuedSynchronizer} instance with initial
  • * synchronization state of zero.
  • */
  • /**
  • * 用0初始化state同步状态,创建一个新的AbstractQueuedSynchronizer实例
  • */
  • protected AbstractQueuedSynchronizer() {
  • }
  • /**
  • * Wait queue node class. 等待队列的Node类
  • *
  • *

  • * The wait queue is a variant of a "CLH" (Craig, Landin, and Hagersten) lock
  • * queue. 等待队列是CLH锁队列的变体
  • *
  • * CLH locks are normally used for spinlocks. CLH锁通常用于自旋锁
  • *
  • * We instead use them for blocking synchronizers, but use the same basic tactic
  • * of holding some of the control information about a thread in the predecessor
  • * of its node. 我们将用他们用于阻塞同步器,但使用相同的基本策略, 将有关线程的某些控制信息保存在其节点的前继节点中
  • *
  • * A "status" field in each node keeps track of whether a thread should block.
  • * 每个节点中的“status”字段都保持线程是否应该阻塞的状态
  • *
  • * A node is signalled when its predecessor releases. 当节点的前继释放时,会给当前节点发信号
  • *
  • * Each node of the queue otherwise serves as a specific-notification-style
  • * monitor holding a single waiting thread. The status field does NOT control
  • * whether threads are granted locks etc though. A thread may try to acquire if
  • * it is first in the queue. But being first does not guarantee success; it only
  • * gives the right to contend. So the currently released contender thread may
  • * need to rewait.
  • *
  • *

  • * To enqueue into a CLH lock, you atomically splice it in as new tail. To
  • * dequeue, you just set the head field.
  • *
  • *
  • * +------+ prev +-----+ +-----+
  • * head | | <---- | | <---- | | tail
  • * +------+ +-----+ +-----+
  • *
  • *
  • *

  • * Insertion into a CLH queue requires only a single atomic operation on "tail",
  • * so there is a simple atomic point of demarcation from unqueued to queued.
  • * Similarly, dequeuing involves only updating the "head". However, it takes a
  • * bit more work for nodes to determine who their successors are, in part to
  • * deal with possible cancellation due to timeouts and interrupts.
  • * 插入到CLH队列中只需要对tail执行一次原子操作,因此存在一个简单的原子分界点,即从未排队到排队
  • * 同样,出队仅涉及更新head。但是,节点需要花费更多的精力来确定其后继者是谁,
  • * 部分原因是要处理由于超时和中断而可能导致的取消
  • *
  • *

  • * The "prev" links (not used in original CLH locks), are mainly needed to
  • * handle cancellation. If a node is cancelled, its successor is (normally)
  • * relinked to a non-cancelled predecessor. For explanation of similar mechanics
  • * in the case of spin locks, see the papers by Scott and Scherer at
  • * http://www.cs.rochester.edu/u/scott/synchronization/
  • *
  • *

  • * We also use "next" links to implement blocking mechanics. The thread id for
  • * each node is kept in its own node, so a predecessor signals the next node to
  • * wake up by traversing next link to determine which thread it is.
  • * Determination of successor must avoid races with newly queued nodes to set
  • * the "next" fields of their predecessors. This is solved when necessary by
  • * checking backwards from the atomically updated "tail" when a node's successor
  • * appears to be null. (Or, said differently, the next-links are an optimization
  • * so that we don't usually need a backward scan.)
  • *
  • *

  • * Cancellation introduces some conservatism to the basic algorithms. Since we
  • * must poll for cancellation of other nodes, we can miss noticing whether a
  • * cancelled node is ahead or behind us. This is dealt with by always unparking
  • * successors upon cancellation, allowing them to stabilize on a new
  • * predecessor, unless we can identify an uncancelled predecessor who will carry
  • * this responsibility.
  • *
  • *

  • * CLH queues need a dummy header node to get started. But we don't create them
  • * on construction, because it would be wasted effort if there is never
  • * contention. Instead, the node is constructed and head and tail pointers are
  • * set upon first contention.
  • *
  • *

  • * Threads waiting on Conditions use the same nodes, but use an additional link.
  • * Conditions only need to link nodes in simple (non-concurrent) linked queues
  • * because they are only accessed when exclusively held. Upon await, a node is
  • * inserted into a condition queue. Upon signal, the node is transferred to the
  • * main queue. A special value of status field is used to mark which queue a
  • * node is on.
  • *
  • *

  • * Thanks go to Dave Dice, Mark Moir, Victor Luchangco, Bill Scherer and Michael
  • * Scott, along with members of JSR-166 expert group, for helpful ideas,
  • * discussions, and critiques on the design of this class.
  • */
  • static final class Node {
  • /** Marker to indicate a node is waiting in shared mode */
  • static final Node SHARED = new Node();
  • /** Marker to indicate a node is waiting in exclusive mode */
  • static final Node EXCLUSIVE = null;
  • /** waitStatus value to indicate thread has cancelled */
  • static final int CANCELLED = 1;
  • /** waitStatus value to indicate successor's thread needs unparking */
  • static final int SIGNAL = -1;
  • /** waitStatus value to indicate thread is waiting on condition */
  • static final int CONDITION = -2;
  • /**
  • * waitStatus value to indicate the next acquireShared should unconditionally
  • * propagate
  • */
  • static final int PROPAGATE = -3;
  • /**
  • * Status field, taking on only the values:
  • *
  • * SIGNAL: The successor of this node is (or will soon be) blocked (via park),
  • * so the current node must unpark its successor when it releases or cancels.
  • * To avoid races, acquire methods must first indicate they need a signal,
  • * then retry the atomic acquire, and then, on failure, block.
  • * 值为-1,表示当前节点的的后继节点将要或者已经被阻塞,在当前节点释放的时候需要unpark(唤醒)后继节点
  • *
  • * CANCELLED: This node is cancelled due to timeout or interrupt. Nodes never
  • * leave this state. In particular, a thread with cancelled node never again blocks.
  • * 值为1,表示当前节点被取消
  • *
  • * CONDITION: This node is currently on a condition queue. It will not be used
  • * as a sync queue node until transferred, at which time the status will be set to 0.
  • * (Use of this value here has nothing to do with the other uses of the field,
  • * but simplifies mechanics.)
  • * 值为-2,表示当前节点在等待condition,即在condition队列中
  • *
  • * PROPAGATE: A releaseShared should be propagated to other nodes. This is set
  • * (for head node only) in doReleaseShared to ensure propagation continues, even
  • * if other operations have since intervened. 0: None of the above
  • * 值为-3,表示releaseShared需要被传播给后续节点(仅在共享模式下使用)
  • *
  • * The values are arranged numerically to simplify use. Non-negative values mean
  • * that a node doesn't need to signal. So, most code doesn't need to check for
  • * particular values, just for sign.
  • *
  • * The field is initialized to 0 for normal sync nodes, and CONDITION for
  • * condition nodes. It is modified using CAS (or when possible, unconditional
  • * volatile writes).
  • * 无状态,表示当前节点在队列中等待获取锁
  • *
  • */
  • volatile int waitStatus;
  • /**
  • * Link to predecessor node that current node/thread relies on for checking
  • * waitStatus. Assigned during enqueuing, and nulled out (for sake of GC) only
  • * upon dequeuing. Also, upon cancellation of a predecessor, we short-circuit
  • * while finding a non-cancelled one, which will always exist because the head
  • * node is never cancelled: A node becomes head only as a result of successful
  • * acquire. A cancelled thread never succeeds in acquiring, and a thread only
  • * cancels itself, not any other node.
  • */
  • volatile Node prev;
  • /**
  • * Link to the successor node that the current node/thread unparks upon release.
  • * Assigned during enqueuing, adjusted when bypassing cancelled predecessors,
  • * and nulled out (for sake of GC) when dequeued. The enq operation does not
  • * assign next field of a predecessor until after attachment, so seeing a null
  • * next field does not necessarily mean that node is at end of queue. However,
  • * if a next field appears to be null, we can scan prev's from the tail to
  • * double-check. The next field of cancelled nodes is set to point to the node
  • * itself instead of null, to make life easier for isOnSyncQueue.
  • */
  • volatile Node next;
  • /**
  • * The thread that enqueued this node. Initialized on construction and nulled
  • * out after use.
  • */
  • volatile Thread thread;
  • /**
  • * Link to next node waiting on condition, or the special value SHARED.
  • * Because condition queues are accessed only when holding in exclusive mode, we just
  • * need a simple linked queue to hold nodes while they are waiting on
  • * conditions. They are then transferred to the queue to re-acquire. And because
  • * conditions can only be exclusive, we save a field by using special value to
  • * indicate shared mode.
  • */
  • Node nextWaiter;
  • /**
  • * Returns true if node is waiting in shared mode.
  • */
  • final boolean isShared() {
  • return nextWaiter == SHARED;
  • }
  • /**
  • * Returns previous node, or throws NullPointerException if null. Use when
  • * predecessor cannot be null. The null check could be elided, but is present to
  • * help the VM.
  • * 返回前继节点,如果为空则抛出异常
  • *
  • * @return the predecessor of this node
  • */
  • final Node predecessor() throws NullPointerException {
  • Node p = prev;
  • if (p == null) {
  • throw new NullPointerException();
  • } else {
  • return p;
  • }
  • }
  • Node() { // Used to establish initial head or SHARED marker
  • }
  • Node(Thread thread, Node mode) { // Used by addWaiter
  • this.nextWaiter = mode;
  • this.thread = thread;
  • }
  • Node(Thread thread, int waitStatus) { // Used by Condition
  • this.waitStatus = waitStatus;
  • this.thread = thread;
  • }
  • }
  • /**
  • * Head of the wait queue, lazily initialized. Except for initialization, it is
  • * modified only via method setHead. Note: If head exists, its waitStatus is
  • * guaranteed not to be CANCELLED. 等待队列头部节点,懒加载,它仅仅通过setHead方法修改
  • * 注意:如果头部节点存在,它的等待状态不保证会是CANCELLED
  • */
  • private transient volatile Node head;
  • /**
  • * Tail of the wait queue, lazily initialized. Modified only via method enq to
  • * add new wait node. 等待队列的队尾节点,懒加载,只能通过enq方法加载新节点到队尾
  • */
  • private transient volatile Node tail;
  • /**
  • * The synchronization state. 同步状态
  • * 该变量对不同的子类实现具有不同的意义
  • * 对ReentrantLock来说,它表示加锁的状态:
  • * 无锁时state=0,有锁时state>0
  • * 第一次加锁时,将state+1
  • * 而对于CountDownLatch来说,它是初始化时子线程的数量
  • *
  • */
  • private volatile int state;
  • /**
  • * Returns the current value of synchronization state. This operation has memory
  • * semantics of a {@code volatile} read.
  • *
  • * @return current state value
  • */
  • protected final int getState() {
  • return state;
  • }
  • /**
  • * Sets the value of synchronization state. This operation has memory semantics
  • * of a {@code volatile} write.
  • *
  • * @param newState the new state value
  • */
  • protected final void setState(int newState) {
  • state = newState;
  • }
  • /**
  • * Atomically sets synchronization state to the given updated value if the
  • * current state value equals the expected value. This operation has memory
  • * semantics of a {@code volatile} read and write. 以原子方式设置同步状态为指定的值
  • *
  • * @param expect the expected value
  • * @param update the new value
  • * @return {@code true} if successful. False return indicates that the actual
  • * value was not equal to the expected value.
  • */
  • protected final boolean compareAndSetState(int expect, int update) {
  • // See below for intrinsics setup to support this
  • return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
  • }
  • // Queuing utilities
  • /**
  • * The number of nanoseconds for which it is faster to spin rather than to use
  • * timed park. A rough estimate suffices to improve responsiveness with very
  • * short timeouts. 自旋超时时间,使用比park更快的纳秒,足以在非常短的时间内提高响应能力,默认值1000纳秒
  • */
  • static final long spinForTimeoutThreshold = 1000L;
  • /**
  • * Inserts node into queue, initializing if necessary. See picture above.
  • * 插入节点到队尾,如果有必要的话初始化
  • *
  • * @param node the node to insert
  • * @return node's predecessor
  • */
  • private Node enq(final Node node) {
  • // 自旋
  • for (;;) {
  • // 将队尾指针给当前节点
  • Node t = tail;
  • if (t == null) { // Must initialize 必须初始化
  • // 如果尾节点为null,说明队列还没有任何节点,那么头节点也就是尾节点
  • if (compareAndSetHead(new Node())) {
  • tail = head;
  • }
  • } else {
  • // 否则尾节点成为当前待加入节点的前继节点
  • node.prev = t;
  • // 将当前节点设置为尾节点
  • if (compareAndSetTail(t, node)) {
  • // 尾节点的后续节点为当前节点
  • t.next = node;
  • return t;
  • }
  • }
  • }
  • }
  • /**
  • * Creates and enqueues node for current thread and given mode.
  • * 按给定模式将当前线程包装成一个入队的节点
  • *
  • * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
  • * @return the new node
  • */
  • private Node addWaiter(Node mode) {
  • // 将当前线程包装成节点
  • Node node = new Node(Thread.currentThread(), mode);
  • // Try the fast path of enq; backup to full enq on failure
  • // 尝试快速入队
  • Node pred = tail;
  • // 尾节点是否为null
  • if (pred != null) {
  • // 将尾节点设置为当前节点的前继节点
  • node.prev = pred;
  • // 将当前节点设置为尾节点
  • if (compareAndSetTail(pred, node)) {
  • // 尾节点的后续节点为当前节点
  • pred.next = node;
  • return node;
  • }
  • }
  • // 尾节点为null,则执行enq
  • enq(node);
  • // 返回当前节点
  • return node;
  • }
  • /**
  • * Sets head of queue to be node, thus dequeuing. Called only by acquire
  • * methods. Also nulls out unused fields for sake of GC and to suppress
  • * unnecessary signals and traversals.
  • * 将节点设置为队列头,从而让持有锁的节点出列,仅由acquire调用
  • * 为了GC和抑制不必要的信号和遍历,也会清空未使用的字段
  • *
  • * @param node the node
  • */
  • private void setHead(Node node) {
  • // 将节点设置为队列头
  • head = node;
  • // 头节点没有线程
  • node.thread = null;
  • // 头节点没有前继节点
  • node.prev = null;
  • }
  • /**
  • * Wakes up node's successor, if one exists.
  • * 唤醒节点的后续节点
  • *
  • * @param node the node
  • */
  • private void unparkSuccessor(Node node) {
  • /*
  • * If status is negative (i.e., possibly needing signal) try to clear in
  • * anticipation of signalling. It is OK if this fails or if status is changed by
  • * waiting thread.
  • * 如果状态值为负,就尝试清除预期信号值
  • * 如果失败或状态由等待线程更改,则OK
  • */
  • int ws = node.waitStatus;
  • if (ws < 0) {
  • compareAndSetWaitStatus(node, ws, 0);
  • }
  • /*
  • * Thread to unpark is held in successor, which is normally just the next node.
  • * But if cancelled or apparently null, traverse backwards from tail to find the
  • * actual non-cancelled successor.
  • */
  • Node s = node.next;
  • if (s == null || s.waitStatus > 0) {
  • s = null;
  • for (Node t = tail; t != null && t != node; t = t.prev) {
  • if (t.waitStatus <= 0) {
  • s = t;
  • }
  • }
  • }
  • if (s != null) {
  • LockSupport.unpark(s.thread);
  • }
  • }
  • /**
  • * Release action for shared mode -- signals successor and ensures propagation.
  • * (Note: For exclusive mode, release just amounts to calling unparkSuccessor of
  • * head if it needs signal.)
  • * 共享模式下的释放行为——发出后续信号并确保传播
  • * (注意:对于独占模式,释放只是在需要信号时调用head的unparkSuccessor方法)
  • *
  • */
  • private void doReleaseShared() {
  • /*
  • * Ensure that a release propagates, even if there are other in-progress
  • * acquires/releases. This proceeds in the usual way of trying to
  • * unparkSuccessor of head if it needs signal. But if it does not, status is set
  • * to PROPAGATE to ensure that upon release, propagation continues.
  • * Additionally, we must loop in case a new node is added while we are doing
  • * this. Also, unlike other uses of unparkSuccessor, we need to know if CAS to
  • * reset status fails, if so rechecking.
  • */
  • for (;;) {
  • Node h = head;
  • if (h != null && h != tail) {
  • int ws = h.waitStatus;
  • if (ws == Node.SIGNAL) {
  • if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0)) {
  • continue; // loop to recheck cases
  • }
  • unparkSuccessor(h);
  • } else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE)) {
  • continue; // loop on failed CAS
  • }
  • }
  • if (h == head) {
  • // loop if head changed
  • break;
  • }
  • }
  • }
  • /**
  • * Sets head of queue, and checks if successor may be waiting in shared mode, if
  • * so propagating if either propagate > 0 or PROPAGATE status was set.
  • *
  • * @param node the node
  • * @param propagate the return value from a tryAcquireShared
  • */
  • private void setHeadAndPropagate(Node node, int propagate) {
  • Node h = head; // Record old head for check below
  • setHead(node);
  • /*
  • * Try to signal next queued node if: Propagation was indicated by caller, or
  • * was recorded (as h.waitStatus either before or after setHead) by a previous
  • * operation (note: this uses sign-check of waitStatus because PROPAGATE status
  • * may transition to SIGNAL.) and The next node is waiting in shared mode, or we
  • * don't know, because it appears null
  • *
  • * The conservatism in both of these checks may cause unnecessary wake-ups, but
  • * only when there are multiple racing acquires/releases, so most need signals
  • * now or soon anyway.
  • */
  • if (propagate > 0 || h == null || h.waitStatus < 0 || (h = head) == null || h.waitStatus < 0) {
  • Node s = node.next;
  • if (s == null || s.isShared()) {
  • doReleaseShared();
  • }
  • }
  • }
  • // Utilities for various versions of acquire
  • /**
  • * Cancels an ongoing attempt to acquire.
  • * 取消一个不断尝试获取锁的线程节点
  • *
  • * @param node the node
  • */
  • private void cancelAcquire(Node node) {
  • // Ignore if node doesn't exist
  • if (node == null) {
  • return;
  • }
  • node.thread = null;
  • // Skip cancelled predecessors
  • Node pred = node.prev;
  • while (pred.waitStatus > 0) {
  • node.prev = pred = pred.prev;
  • }
  • // predNext is the apparent node to unsplice. CASes below will
  • // fail if not, in which case, we lost race vs another cancel
  • // or signal, so no further action is necessary.
  • Node predNext = pred.next;
  • // Can use unconditional write instead of CAS here.
  • // After this atomic step, other Nodes can skip past us.
  • // Before, we are free of interference from other threads.
  • node.waitStatus = Node.CANCELLED;
  • // If we are the tail, remove ourselves.
  • if (node == tail && compareAndSetTail(node, pred)) {
  • compareAndSetNext(pred, predNext, null);
  • } else {
  • // If successor needs signal, try to set pred's next-link
  • // so it will get one. Otherwise wake it up to propagate.
  • int ws;
  • if (pred != head &&
  • ((ws = pred.waitStatus) == Node.SIGNAL || (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
  • pred.thread != null) {
  • Node next = node.next;
  • if (next != null && next.waitStatus <= 0) {
  • compareAndSetNext(pred, predNext, next);
  • }
  • } else {
  • unparkSuccessor(node);
  • }
  • node.next = node; // help GC
  • }
  • }
  • /**
  • * Checks and updates status for a node that failed to acquire. Returns true if
  • * thread should block. This is the main signal control in all acquire loops.
  • * Requires that pred == node.prev.
  • * 节点获取锁失败时检查并且更新状态值,如果线程应该阻塞返回true
  • * 在所有获取锁的循环中这是主要的信号控制
  • *
  • * @param pred node's predecessor holding status
  • * @param node the node
  • * @return {@code true} if thread should block
  • */
  • private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
  • int ws = pred.waitStatus;
  • if (ws == Node.SIGNAL) {
  • /*
  • * This node has already set status asking a release to signal it, so it can
  • * safely park.
  • */
  • return true;
  • }
  • if (ws > 0) {
  • /*
  • * Predecessor was cancelled. Skip over predecessors and indicate retry.
  • */
  • do {
  • node.prev = pred = pred.prev;
  • } while (pred.waitStatus > 0);
  • pred.next = node;
  • } else {
  • /*
  • * waitStatus must be 0 or PROPAGATE. Indicate that we need a signal, but don't
  • * park yet. Caller will need to retry to make sure it cannot acquire before
  • * parking.
  • */
  • compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
  • }
  • return false;
  • }
  • /**
  • * Convenience method to interrupt current thread.
  • * 中断当前线程的快捷方法
  • */
  • static void selfInterrupt() {
  • Thread.currentThread().interrupt();
  • }
  • /**
  • * Convenience method to park and then check if interrupted
  • *
  • * @return {@code true} if interrupted
  • */
  • private final boolean parkAndCheckInterrupt() {
  • LockSupport.park(this);
  • return Thread.interrupted();
  • }
  • /*
  • * Various flavors of acquire, varying in exclusive/shared and control modes.
  • * Each is mostly the same, but annoyingly different. Only a little bit of
  • * factoring is possible due to interactions of exception mechanics (including
  • * ensuring that we cancel if tryAcquire throws exception) and other control, at
  • * least not without hurting performance too much.
  • * 在独占和共享模式中,获取锁有多种方式,大多数都相同
  • * 由于异常机制(包括确保在tryAcquire抛出异常时取消)和其他控件的交互,
  • * 性能可能会受一点影响,但至少不会造成太大的损害
  • */
  • /**
  • * Acquires in exclusive uninterruptible mode for thread already in queue. Used
  • * by condition wait methods as well as acquire.
  • * 以独占不中断模式获取队列中已存在的线程。用于condition等待方法以及获取锁
  • *
  • * @param node the node
  • * @param arg the acquire argument
  • * @return {@code true} if interrupted while waiting
  • */
  • final boolean acquireQueued(final Node node, int arg) {
  • boolean failed = true;
  • try {
  • boolean interrupted = false;
  • for (;;) {
  • final Node p = node.predecessor();
  • if (p == head && tryAcquire(arg)) {
  • setHead(node);
  • p.next = null; // help GC
  • failed = false;
  • return interrupted;
  • }
  • if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) {
  • interrupted = true;
  • }
  • }
  • } finally {
  • if (failed) {
  • cancelAcquire(node);
  • }
  • }
  • }
  • /**
  • * Acquires in exclusive interruptible mode.
  • * 独占中断模式获取锁
  • *
  • * @param arg the acquire argument
  • */
  • private void doAcquireInterruptibly(int arg) throws InterruptedException {
  • final Node node = addWaiter(Node.EXCLUSIVE);
  • boolean failed = true;
  • try {
  • for (;;) {
  • final Node p = node.predecessor();
  • if (p == head && tryAcquire(arg)) {
  • setHead(node);
  • p.next = null; // help GC
  • failed = false;
  • return;
  • }
  • if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())
  • throw new InterruptedException();
  • }
  • } finally {
  • if (failed)
  • cancelAcquire(node);
  • }
  • }
  • /**
  • * Acquires in exclusive timed mode.
  • * 独占超时模式获取锁
  • *
  • * @param arg the acquire argument
  • * @param nanosTimeout max wait time
  • * @return {@code true} if acquired
  • */
  • private boolean doAcquireNanos(int arg, long nanosTimeout) throws InterruptedException {
  • if (nanosTimeout <= 0L) {
  • return false;
  • }
  • final long deadline = System.nanoTime() + nanosTimeout;
  • final Node node = addWaiter(Node.EXCLUSIVE);
  • boolean failed = true;
  • try {
  • for (;;) {
  • final Node p = node.predecessor();
  • if (p == head && tryAcquire(arg)) {
  • setHead(node);
  • p.next = null; // help GC
  • failed = false;
  • return true;
  • }
  • nanosTimeout = deadline - System.nanoTime();
  • if (nanosTimeout <= 0L) {
  • return false;
  • }
  • if (shouldParkAfterFailedAcquire(p, node) && nanosTimeout > spinForTimeoutThreshold) {
  • LockSupport.parkNanos(this, nanosTimeout);
  • }
  • if (Thread.interrupted()) {
  • throw new InterruptedException();
  • }
  • }
  • } finally {
  • if (failed) {
  • cancelAcquire(node);
  • }
  • }
  • }
  • /**
  • * Acquires in shared uninterruptible mode.
  • * 共享非中断模式获取锁
  • *
  • * @param arg the acquire argument
  • */
  • private void doAcquireShared(int arg) {
  • final Node node = addWaiter(Node.SHARED);
  • boolean failed = true;
  • try {
  • boolean interrupted = false;
  • for (;;) {
  • final Node p = node.predecessor();
  • if (p == head) {
  • int r = tryAcquireShared(arg);
  • if (r >= 0) {
  • setHeadAndPropagate(node, r);
  • p.next = null; // help GC
  • if (interrupted) {
  • selfInterrupt();
  • }
  • failed = false;
  • return;
  • }
  • }
  • if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) {
  • interrupted = true;
  • }
  • }
  • } finally {
  • if (failed) {
  • cancelAcquire(node);
  • }
  • }
  • }
  • /**
  • * Acquires in shared interruptible mode.
  • * 共享中断模式获取锁
  • *
  • * @param arg the acquire argument
  • */
  • private void doAcquireSharedInterruptibly(int arg) throws InterruptedException {
  • final Node node = addWaiter(Node.SHARED);
  • boolean failed = true;
  • try {
  • for (;;) {
  • final Node p = node.predecessor();
  • if (p == head) {
  • int r = tryAcquireShared(arg);
  • if (r >= 0) {
  • setHeadAndPropagate(node, r);
  • p.next = null; // help GC
  • failed = false;
  • return;
  • }
  • }
  • if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) {
  • throw new InterruptedException();
  • }
  • }
  • } finally {
  • if (failed) {
  • cancelAcquire(node);
  • }
  • }
  • }
  • /**
  • * Acquires in shared timed mode.
  • * 共享超时模式获取锁
  • *
  • * @param arg the acquire argument
  • * @param nanosTimeout max wait time
  • * @return {@code true} if acquired
  • */
  • private boolean doAcquireSharedNanos(int arg, long nanosTimeout) throws InterruptedException {
  • if (nanosTimeout <= 0L) {
  • return false;
  • }
  • final long deadline = System.nanoTime() + nanosTimeout;
  • final Node node = addWaiter(Node.SHARED);
  • boolean failed = true;
  • try {
  • for (;;) {
  • final Node p = node.predecessor();
  • if (p == head) {
  • int r = tryAcquireShared(arg);
  • if (r >= 0) {
  • setHeadAndPropagate(node, r);
  • p.next = null; // help GC
  • failed = false;
  • return true;
  • }
  • }
  • nanosTimeout = deadline - System.nanoTime();
  • if (nanosTimeout <= 0L) {
  • return false;
  • }
  • if (shouldParkAfterFailedAcquire(p, node) && nanosTimeout > spinForTimeoutThreshold) {
  • LockSupport.parkNanos(this, nanosTimeout);
  • }
  • if (Thread.interrupted()) {
  • throw new InterruptedException();
  • }
  • }
  • } finally {
  • if (failed) {
  • cancelAcquire(node);
  • }
  • }
  • }
  • // Main exported methods
  • // 主要的自定义方法
  • /**
  • * Attempts to acquire in exclusive mode. This method should query if the state
  • * of the object permits it to be acquired in the exclusive mode, and if so to
  • * acquire it.
  • * 尝试以独占模式获取锁,此方法应该查询对象的状态state是否允许以独占模式获取锁,如果允许则获取锁
  • *
  • *

  • * This method is always invoked by the thread performing acquire. If this
  • * method reports failure, the acquire method may queue the thread, if it is not
  • * already queued, until it is signalled by a release from some other thread.
  • * This can be used to implement method {@link Lock#tryLock()}.
  • * 此方法始终由执行获取锁的线程调用,如果获取失败,则会将线程放到CLH队列队尾(如果尚未排队),
  • * 直到某个其他线程发出释放信号,这可用于实现接口方法tryLock
  • *
  • *

  • * The default implementation throws {@link UnsupportedOperationException}.
  • * 缺省实现是抛出UnsupportedOperationException异常
  • *
  • * @param arg the acquire argument. This value is always the one passed to an
  • * acquire method, or is the value saved on entry to a condition
  • * wait. The value is otherwise uninterpreted and can represent
  • * anything you like.
  • * 获取锁的参数,表示需要获取锁的数量
  • *
  • * @return {@code true} if successful. Upon success, this object has been acquired.
  • * @throws IllegalMonitorStateException
  • * if acquiring would place this synchronizer in an illegal state.
  • * This exception must be thrown in a consistent fashion for
  • * synchronization to work correctly.
  • * @throws UnsupportedOperationException
  • * if exclusive mode is not supported
  • */
  • protected boolean tryAcquire(int arg) {
  • throw new UnsupportedOperationException();
  • }
  • /**
  • * Attempts to set the state to reflect a release in exclusive mode.
  • * 尝试将状态state设置为以独占模式释放锁
  • *
  • *

  • * This method is always invoked by the thread performing release.
  • * 此方法始终由执行释放的线程调用
  • *
  • *

  • * The default implementation throws {@link UnsupportedOperationException}.
  • * 缺省实现是抛出UnsupportedOperationException异常
  • *
  • * @param arg the release argument. This value is always the one passed to a
  • * release method, or the current state value upon entry to a
  • * condition wait. The value is otherwise uninterpreted and can
  • * represent anything you like.
  • * 释放锁的参数,表示需要释放锁的数量,与tryAcquire中需要获取的数量一一对应
  • *
  • * @return {@code true} if this object is now in a fully released state, so that
  • * any waiting threads may attempt to acquire; and {@code false}
  • * otherwise.
  • * @throws IllegalMonitorStateException
  • * if releasing would place this synchronizer in an illegal state.
  • * This exception must be thrown in a consistent fashion for
  • * synchronization to work correctly.
  • * @throws UnsupportedOperationException
  • * if exclusive mode is not supported
  • */
  • protected boolean tryRelease(int arg) {
  • throw new UnsupportedOperationException();
  • }
  • /**
  • * Attempts to acquire in shared mode. This method should query if the state of
  • * the object permits it to be acquired in the shared mode, and if so to acquire
  • * it.
  • * 共享模式尝试获取锁
  • *
  • *

  • * This method is always invoked by the thread performing acquire. If this
  • * method reports failure, the acquire method may queue the thread, if it is not
  • * already queued, until it is signalled by a release from some other thread.
  • * 此方法始终由执行获取的线程调用,如果调用失败,则会将线程放到CLH队列队尾(如果尚未排队),
  • * 直到某个其他线程发出释放信号
  • *
  • *

  • * The default implementation throws {@link UnsupportedOperationException}.
  • * 缺省实现是抛出UnsupportedOperationException异常
  • *
  • * @param arg the acquire argument. This value is always the one passed to an
  • * acquire method, or is the value saved on entry to a condition
  • * wait. The value is otherwise uninterpreted and can represent
  • * anything you like.
  • * @return a negative value on failure; zero if acquisition in shared mode
  • * succeeded but no subsequent shared-mode acquire can succeed; and a
  • * positive value if acquisition in shared mode succeeded and subsequent
  • * shared-mode acquires might also succeed, in which case a subsequent
  • * waiting thread must check availability. (Support for three different
  • * return values enables this method to be used in contexts where
  • * acquires only sometimes act exclusively.) Upon success, this object
  • * has been acquired.
  • * @throws IllegalMonitorStateException
  • * if acquiring would place this synchronizer in an illegal state.
  • * This exception must be thrown in a consistent fashion for
  • * synchronization to work correctly.
  • * @throws UnsupportedOperationException
  • * if shared mode is not supported
  • */
  • protected int tryAcquireShared(int arg) {
  • throw new UnsupportedOperationException();
  • }
  • /**
  • * Attempts to set the state to reflect a release in shared mode.
  • * 尝试将状态state设置为以共享模式释放锁
  • *
  • *

  • * This method is always invoked by the thread performing release.
  • * 此方法始终由执行获取的线程调用
  • *
  • *

  • * The default implementation throws {@link UnsupportedOperationException}.
  • * 缺省实现是抛出UnsupportedOperationException异常
  • *
  • * @param arg the release argument. This value is always the one passed to a
  • * release method, or the current state value upon entry to a
  • * condition wait. The value is otherwise uninterpreted and can
  • * represent anything you like.
  • * @return {@code true} if this release of shared mode may permit a waiting
  • * acquire (shared or exclusive) to succeed; and {@code false} otherwise
  • * @throws IllegalMonitorStateException
  • * if releasing would place this synchronizer in an illegal state.
  • * This exception must be thrown in a consistent fashion for
  • * synchronization to work correctly.
  • * @throws UnsupportedOperationException
  • * if shared mode is not supported
  • */
  • protected boolean tryReleaseShared(int arg) {
  • throw new UnsupportedOperationException();
  • }
  • /**
  • * Returns {@code true} if synchronization is held exclusively with respect to
  • * the current (calling) thread. This method is invoked upon each call to a
  • * non-waiting {@link ConditionObject} method. (Waiting methods instead invoke
  • * {@link #release}.)
  • * 如果以独占方式保持与当前(调用)线程的同步,则返回true
  • * 每次调用非等待的ConditionObject方法时都会调用此方法(等待方法改为调用release)
  • *
  • *

  • * The default implementation throws {@link UnsupportedOperationException}. This
  • * method is invoked internally only within {@link ConditionObject} methods, so
  • * need not be defined if conditions are not used.
  • * 缺省实现是抛出UnsupportedOperationException异常
  • * 此方法仅在ConditionObject内部调用,因此如果不使用Condition,则无需定义
  • *
  • * @return {@code true} if synchronization is held exclusively; {@code false}
  • * otherwise
  • * @throws UnsupportedOperationException if conditions are not supported
  • */
  • protected boolean isHeldExclusively() {
  • throw new UnsupportedOperationException();
  • }
  • /**
  • * Acquires in exclusive mode, ignoring interrupts. Implemented by invoking at
  • * least once {@link #tryAcquire}, returning on success. Otherwise the thread is
  • * queued, possibly repeatedly blocking and unblocking, invoking
  • * {@link #tryAcquire} until success. This method can be used to implement
  • * method {@link Lock#lock}.
  • * 以独占模式获取锁,忽略中断,通过调用至少一次tryAcquire来实现,成功时返回,否则线程将排队
  • * 可能会反复阻塞和解除阻塞,调用tryAcquire直到成功获取锁,此方法可用于实现接口方法lock
  • *
  • * @param arg the acquire argument. This value is conveyed to
  • * {@link #tryAcquire} but is otherwise uninterpreted and can
  • * represent anything you like.
  • */
  • public final void acquire(int arg) {
  • /**
  • * 该方法主要做了如下工作:
  • * 先看tryAcquire尝试获取独占锁是否成功,获取成功则返回
  • * 否则用addWaiter方法将当前线程封装成Node对象,并添加到队列尾部
  • * 自旋获取锁,并判断中断标志位
  • * 如果中断标志位为true,则设置中断线程,否则返回
  • */
  • if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) {
  • selfInterrupt();
  • }
  • }
  • /**
  • * Acquires in exclusive mode, aborting if interrupted. Implemented by first
  • * checking interrupt status, then invoking at least once {@link #tryAcquire},
  • * returning on success. Otherwise the thread is queued, possibly repeatedly
  • * blocking and unblocking, invoking {@link #tryAcquire} until success or the
  • * thread is interrupted. This method can be used to implement method
  • * {@link Lock#lockInterruptibly}.
  • * 独占模式获取锁,如果中断则取消
  • * 首先检查中断状态,然后至少调用一次tryAcquire来实现方法,在成功时返回,否则线程将进入队尾
  • * 可能会反复阻塞和解除阻塞,调用tryAcquire,直到成功或线程被中断
  • * 此方法可用于实现接口方法lockInterruptibly
  • *
  • * @param arg the acquire argument. This value is conveyed to
  • * {@link #tryAcquire} but is otherwise uninterpreted and can
  • * represent anything you like.
  • * @throws InterruptedException if the current thread is interrupted
  • */
  • public final void acquireInterruptibly(int arg) throws InterruptedException {
  • if (Thread.interrupted()) {
  • throw new InterruptedException();
  • }
  • if (!tryAcquire(arg)) {
  • doAcquireInterruptibly(arg);
  • }
  • }
  • /**
  • * Attempts to acquire in exclusive mode, aborting if interrupted, and failing
  • * if the given timeout elapses. Implemented by first checking interrupt status,
  • * then invoking at least once {@link #tryAcquire}, returning on success.
  • * Otherwise, the thread is queued, possibly repeatedly blocking and unblocking,
  • * invoking {@link #tryAcquire} until success or the thread is interrupted or
  • * the timeout elapses. This method can be used to implement method
  • * {@link Lock#tryLock(long, TimeUnit)}.
  • * 尝试以独占模式获取锁,如果中断则中止,如果超时则失败
  • * 通过首先检查中断状态,然后至少调用一次tryAcquire来实现,在成功时返回,否则线程将进入队尾
  • * 可能会反复阻塞和解除阻塞,调用tryAcquire,直到成功或线程中断或超时结束
  • * 此方法可用于实现接口方法tryLock(long, TimeUnit)
  • *
  • * @param arg the acquire argument. This value is conveyed to
  • * {@link #tryAcquire} but is otherwise uninterpreted and can
  • * represent anything you like.
  • * @param nanosTimeout the maximum number of nanoseconds to wait
  • * @return {@code true} if acquired; {@code false} if timed out
  • * @throws InterruptedException if the current thread is interrupted
  • */
  • public final boolean tryAcquireNanos(int arg, long nanosTimeout) throws InterruptedException {
  • if (Thread.interrupted()) {
  • throw new InterruptedException();
  • }
  • return tryAcquire(arg) || doAcquireNanos(arg, nanosTimeout);
  • }
  • /**
  • * Releases in exclusive mode. Implemented by unblocking one or more threads if
  • * {@link #tryRelease} returns true. This method can be used to implement method
  • * {@link Lock#unlock}.
  • * 独占模式时释放锁,通过解除一个或多个阻塞线程来实现,如果tryRelease返回true
  • * 此方法可用于实现接口方法unlock
  • *
  • * @param arg the release argument. This value is conveyed to
  • * {@link #tryRelease} but is otherwise uninterpreted and can
  • * represent anything you like.
  • * @return the value returned from {@link #tryRelease}
  • */
  • public final boolean release(int arg) {
  • if (tryRelease(arg)) {
  • Node h = head;
  • if (h != null && h.waitStatus != 0) {
  • unparkSuccessor(h);
  • }
  • return true;
  • }
  • return false;
  • }
  • /**
  • * Acquires in shared mode, ignoring interrupts. Implemented by first invoking
  • * at least once {@link #tryAcquireShared}, returning on success. Otherwise the
  • * thread is queued, possibly repeatedly blocking and unblocking, invoking
  • * {@link #tryAcquireShared} until success.
  • *
  • * @param arg the acquire argument. This value is conveyed to
  • * {@link #tryAcquireShared} but is otherwise uninterpreted and can
  • * represent anything you like.
  • */
  • public final void acquireShared(int arg) {
  • if (tryAcquireShared(arg) < 0) {
  • doAcquireShared(arg);
  • }
  • }
  • /**
  • * Acquires in shared mode, aborting if interrupted. Implemented by first
  • * checking interrupt status, then invoking at least once
  • * {@link #tryAcquireShared}, returning on success. Otherwise the thread is
  • * queued, possibly repeatedly blocking and unblocking, invoking
  • * {@link #tryAcquireShared} until success or the thread is interrupted.
  • *
  • * @param arg the acquire argument. This value is conveyed to
  • * {@link #tryAcquireShared} but is otherwise uninterpreted and can
  • * represent anything you like.
  • * @throws InterruptedException
  • * if the current thread is interrupted
  • */
  • public final void acquireSharedInterruptibly(int arg) throws InterruptedException {
  • if (Thread.interrupted()) {
  • throw new InterruptedException();
  • }
  • if (tryAcquireShared(arg) < 0) {
  • doAcquireSharedInterruptibly(arg);
  • }
  • }
  • /**
  • * Attempts to acquire in shared mode, aborting if interrupted, and failing if
  • * the given timeout elapses. Implemented by first checking interrupt status,
  • * then invoking at least once {@link #tryAcquireShared}, returning on success.
  • * Otherwise, the thread is queued, possibly repeatedly blocking and unblocking,
  • * invoking {@link #tryAcquireShared} until success or the thread is interrupted
  • * or the timeout elapses.
  • *
  • * @param arg the acquire argument. This value is conveyed to
  • * {@link #tryAcquireShared} but is otherwise uninterpreted and can
  • * represent anything you like.
  • * @param nanosTimeout
  • * the maximum number of nanoseconds to wait
  • * @return {@code true} if acquired; {@code false} if timed out
  • * @throws InterruptedException
  • * if the current thread is interrupted
  • */
  • public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout) throws InterruptedException {
  • if (Thread.interrupted()) {
  • throw new InterruptedException();
  • }
  • return tryAcquireShared(arg) >= 0 || doAcquireSharedNanos(arg, nanosTimeout);
  • }
  • /**
  • * Releases in shared mode. Implemented by unblocking one or more threads if
  • * {@link #tryReleaseShared} returns true.
  • *
  • * @param arg the release argument. This value is conveyed to
  • * {@link #tryReleaseShared} but is otherwise uninterpreted and can
  • * represent anything you like.
  • * @return the value returned from {@link #tryReleaseShared}
  • */
  • public final boolean releaseShared(int arg) {
  • if (tryReleaseShared(arg)) {
  • doReleaseShared();
  • return true;
  • }
  • return false;
  • }
  • // Queue inspection methods
  • /**
  • * Queries whether any threads are waiting to acquire. Note that because
  • * cancellations due to interrupts and timeouts may occur at any time, a
  • * {@code true} return does not guarantee that any other thread will ever
  • * acquire.
  • * 查询是否有线程正在等待获取锁
  • * 请注意,由于中断和超时导致的取消可能随时发生,因此返回true不能保证任何其他线程将获得锁
  • *
  • *

  • * In this implementation, this operation returns in constant time.
  • * 在该实现中,操作以指定的时间返回
  • *
  • * @return {@code true} if there may be other threads waiting to acquire
  • */
  • public final boolean hasQueuedThreads() {
  • return head != tail;
  • }
  • /**
  • * Queries whether any threads have ever contended to acquire this synchronizer;
  • * that is if an acquire method has ever blocked.
  • * 查询是否有任何线程曾争用获取此同步器,也就是说,是否某个获取锁方法曾被阻塞
  • *
  • *

  • * In this implementation, this operation returns in constant time.
  • * 在该实现中,操作以指定的时间返回
  • *
  • * @return {@code true} if there has ever been contention
  • */
  • public final boolean hasContended() {
  • return head != null;
  • }
  • /**
  • * Returns the first (longest-waiting) thread in the queue, or {@code null} if
  • * no threads are currently queued.
  • *
  • *

  • * In this implementation, this operation normally returns in constant time, but
  • * may iterate upon contention if other threads are concurrently modifying the
  • * queue.
  • *
  • * @return the first (longest-waiting) thread in the queue, or {@code null} if
  • * no threads are currently queued
  • */
  • public final Thread getFirstQueuedThread() {
  • // handle only fast path, else relay
  • return (head == tail) ? null : fullGetFirstQueuedThread();
  • }
  • /**
  • * Version of getFirstQueuedThread called when fastpath fails
  • */
  • private Thread fullGetFirstQueuedThread() {
  • /*
  • * The first node is normally head.next. Try to get its thread field, ensuring
  • * consistent reads: If thread field is nulled out or s.prev is no longer head,
  • * then some other thread(s) concurrently performed setHead in between some of
  • * our reads. We try this twice before resorting to traversal.
  • */
  • Node h, s;
  • Thread st;
  • if (((h = head) != null && (s = h.next) != null && s.prev == head && (st = s.thread) != null)
  • || ((h = head) != null && (s = h.next) != null && s.prev == head && (st = s.thread) != null)) {
  • return st;
  • }
  • /*
  • * Head's next field might not have been set yet, or may have been unset after
  • * setHead. So we must check to see if tail is actually first node. If not, we
  • * continue on, safely traversing from tail back to head to find first,
  • * guaranteeing termination.
  • */
  • Node t = tail;
  • Thread firstThread = null;
  • while (t != null && t != head) {
  • Thread tt = t.thread;
  • if (tt != null) {
  • firstThread = tt;
  • }
  • t = t.prev;
  • }
  • return firstThread;
  • }
  • /**
  • * Returns true if the given thread is currently queued.
  • *
  • *

  • * This implementation traverses the queue to determine presence of the given thread.
  • *
  • * @param thread the thread
  • * @return {@code true} if the given thread is on the queue
  • * @throws NullPointerException if the thread is null
  • */
  • public final boolean isQueued(Thread thread) {
  • if (thread == null) {
  • throw new NullPointerException();
  • }
  • for (Node p = tail; p != null; p = p.prev) {
  • if (p.thread == thread) {
  • return true;
  • }
  • }
  • return false;
  • }
  • /**
  • * Returns {@code true} if the apparent first queued thread, if one exists, is
  • * waiting in exclusive mode. If this method returns {@code true}, and the
  • * current thread is attempting to acquire in shared mode (that is, this method
  • * is invoked from {@link #tryAcquireShared}) then it is guaranteed that the
  • * current thread is not the first queued thread. Used only as a heuristic in
  • * ReentrantReadWriteLock.
  • */
  • final boolean apparentlyFirstQueuedIsExclusive() {
  • Node h, s;
  • return (h = head) != null && (s = h.next) != null && !s.isShared() && s.thread != null;
  • }
  • /**
  • * Queries whether any threads have been waiting to acquire longer than the
  • * current thread.
  • * 查询是否有任何线程等待获取锁的时间超过当前线程
  • *
  • *

  • * An invocation of this method is equivalent to (but may be more efficient
  • * than):
  • * 调用此方法相当于调用:getFirstQueuedThread() != Thread.currentThread() && hasQueuedThreads()
  • *
  • *
  • * {@code getFirstQueuedThread() != Thread.currentThread() && hasQueuedThreads()}
  • *
  • *
  • *

  • * Note that because cancellations due to interrupts and timeouts may occur at
  • * any time, a {@code true} return does not guarantee that some other thread
  • * will acquire before the current thread. Likewise, it is possible for another
  • * thread to win a race to enqueue after this method has returned {@code false},
  • * due to the queue being empty.
  • *
  • *

  • * This method is designed to be used by a fair synchronizer to avoid
  • * barging. Such a
  • * synchronizer's {@link #tryAcquire} method should return {@code false}, and
  • * its {@link #tryAcquireShared} method should return a negative value, if this
  • * method returns {@code true} (unless this is a reentrant acquire). For
  • * example, the {@codetryAcquire} method for a fair, reentrant, exclusive mode
  • * synchronizer might look like this:
  • *
  • *
  • * {@code
  • * protected boolean tryAcquire(int arg) {
  • * if (isHeldExclusively()) {
  • * // A reentrant acquire; increment hold count
  • * return true;
  • * } else if (hasQueuedPredecessors()) {
  • * return false;
  • * } else {
  • * // try to acquire normally
  • * }
  • * }}
  • *
  • *
  • * @return {@code true} if there is a queued thread preceding the current
  • * thread, and {@code false} if the current thread is at the head of the
  • * queue or the queue is empty
  • * @since 1.7
  • */
  • public final boolean hasQueuedPredecessors() {
  • // The correctness of this depends on head being initialized
  • // before tail and on head.next being accurate if the current
  • // thread is first in queue.
  • Node t = tail; // Read fields in reverse initialization order
  • Node h = head;
  • Node s;
  • return h != t && ((s = h.next) == null || s.thread != Thread.currentThread());
  • }
  • // Instrumentation and monitoring methods
  • /**
  • * Returns an estimate of the number of threads waiting to acquire. The value is
  • * only an estimate because the number of threads may change dynamically while
  • * this method traverses internal data structures. This method is designed for
  • * use in monitoring system state, not for synchronization control.
  • *
  • * @return the estimated number of threads waiting to acquire
  • */
  • public final int getQueueLength() {
  • int n = 0;
  • for (Node p = tail; p != null; p = p.prev) {
  • if (p.thread != null) {
  • ++n;
  • }
  • }
  • return n;
  • }
  • /**
  • * Returns a collection containing threads that may be waiting to acquire.
  • * Because the actual set of threads may change dynamically while constructing
  • * this result, the returned collection is only a best-effort estimate. The
  • * elements of the returned collection are in no particular order. This method
  • * is designed to facilitate construction of subclasses that provide more
  • * extensive monitoring facilities.
  • *
  • * @return the collection of threads
  • */
  • public final Collection getQueuedThreads() {
  • ArrayList list = new ArrayList();
  • for (Node p = tail; p != null; p = p.prev) {
  • Thread t = p.thread;
  • if (t != null) {
  • list.add(t);
  • }
  • }
  • return list;
  • }
  • /**
  • * Returns a collection containing threads that may be waiting to acquire in
  • * exclusive mode. This has the same properties as {@link #getQueuedThreads}
  • * except that it only returns those threads waiting due to an exclusive
  • * acquire.
  • *
  • * @return the collection of threads
  • */
  • public final Collection getExclusiveQueuedThreads() {
  • ArrayList list = new ArrayList();
  • for (Node p = tail; p != null; p = p.prev) {
  • if (!p.isShared()) {
  • Thread t = p.thread;
  • if (t != null) {
  • list.add(t);
  • }
  • }
  • }
  • return list;
  • }
  • /**
  • * Returns a collection containing threads that may be waiting to acquire in
  • * shared mode. This has the same properties as {@link #getQueuedThreads} except
  • * that it only returns those threads waiting due to a shared acquire.
  • *
  • * @return the collection of threads
  • */
  • public final Collection getSharedQueuedThreads() {
  • ArrayList list = new ArrayList();
  • for (Node p = tail; p != null; p = p.prev) {
  • if (p.isShared()) {
  • Thread t = p.thread;
  • if (t != null) {
  • list.add(t);
  • }
  • }
  • }
  • return list;
  • }
  • /**
  • * Returns a string identifying this synchronizer, as well as its state. The
  • * state, in brackets, includes the String {@code "State ="} followed by the
  • * current value of {@link #getState}, and either {@code "nonempty"} or
  • * {@code "empty"} depending on whether the queue is empty.
  • *
  • * @return a string identifying this synchronizer, as well as its state
  • */
  • public String toString() {
  • int s = getState();
  • String q = hasQueuedThreads() ? "non" : "";
  • return super.toString() + "[State = " + s + ", " + q + "empty queue]";
  • }
  • // Internal support methods for Conditions
  • /**
  • * Returns true if a node, always one that was initially placed on a condition
  • * queue, is now waiting to reacquire on sync queue.
  • *
  • * @param node the node
  • * @return true if is reacquiring
  • */
  • final boolean isOnSyncQueue(Node node) {
  • if (node.waitStatus == Node.CONDITION || node.prev == null) {
  • return false;
  • }
  • if (node.next != null) {// If has successor, it must be on queue
  • return true;
  • }
  • /*
  • * node.prev can be non-null, but not yet on queue because the CAS to place it
  • * on queue can fail. So we have to traverse from tail to make sure it actually
  • * made it. It will always be near the tail in calls to this method, and unless
  • * the CAS failed (which is unlikely), it will be there, so we hardly ever
  • * traverse much.
  • */
  • return findNodeFromTail(node);
  • }
  • /**
  • * Returns true if node is on sync queue by searching backwards from tail.
  • * Called only when needed by isOnSyncQueue.
  • *
  • * @return true if present
  • */
  • private boolean findNodeFromTail(Node node) {
  • Node t = tail;
  • for (;;) {
  • if (t == node) {
  • return true;
  • }
  • if (t == null) {
  • return false;
  • }
  • t = t.prev;
  • }
  • }
  • /**
  • * Transfers a node from a condition queue onto sync queue. Returns true if
  • * successful.
  • *
  • * @param node the node
  • * @return true if successfully transferred (else the node was cancelled before
  • * signal)
  • */
  • final boolean transferForSignal(Node node) {
  • /*
  • * If cannot change waitStatus, the node has been cancelled.
  • */
  • if (!compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
  • return false;
  • }
  • /*
  • * Splice onto queue and try to set waitStatus of predecessor to indicate that
  • * thread is (probably) waiting. If cancelled or attempt to set waitStatus
  • * fails, wake up to resync (in which case the waitStatus can be transiently and
  • * harmlessly wrong).
  • */
  • Node p = enq(node);
  • int ws = p.waitStatus;
  • if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL)) {
  • LockSupport.unpark(node.thread);
  • }
  • return true;
  • }
  • /**
  • * Transfers node, if necessary, to sync queue after a cancelled wait. Returns
  • * true if thread was cancelled before being signalled.
  • *
  • * @param node the node
  • * @return true if cancelled before the node was signalled
  • */
  • final boolean transferAfterCancelledWait(Node node) {
  • if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
  • enq(node);
  • return true;
  • }
  • /*
  • * If we lost out to a signal(), then we can't proceed until it finishes its
  • * enq(). Cancelling during an incomplete transfer is both rare and transient,
  • * so just spin.
  • */
  • while (!isOnSyncQueue(node)) {
  • Thread.yield();
  • }
  • return false;
  • }
  • /**
  • * Invokes release with current state value; returns saved state. Cancels node
  • * and throws exception on failure.
  • *
  • * @param node the condition node for this wait
  • * @return previous sync state
  • */
  • final int fullyRelease(Node node) {
  • boolean failed = true;
  • try {
  • int savedState = getState();
  • if (release(savedState)) {
  • failed = false;
  • return savedState;
  • } else {
  • throw new IllegalMonitorStateException();
  • }
  • } finally {
  • if (failed) {
  • node.waitStatus = Node.CANCELLED;
  • }
  • }
  • }
  • // Instrumentation methods for conditions
  • /**
  • * Queries whether the given ConditionObject uses this synchronizer as its lock.
  • *
  • * @param condition the condition
  • * @return {@code true} if owned
  • * @throws NullPointerException if the condition is null
  • */
  • public final boolean owns(ConditionObject condition) {
  • return condition.isOwnedBy(this);
  • }
  • /**
  • * Queries whether any threads are waiting on the given condition associated
  • * with this synchronizer. Note that because timeouts and interrupts may occur
  • * at any time, a {@code true} return does not guarantee that a future
  • * {@code signal} will awaken any threads. This method is designed primarily for
  • * use in monitoring of the system state.
  • *
  • * @param condition the condition
  • * @return {@code true} if there are any waiting threads
  • * @throws IllegalMonitorStateException if exclusive synchronization is not held
  • * @throws IllegalArgumentException
  • * if the given condition is not associated with this synchronizer
  • * @throws NullPointerException if the condition is null
  • */
  • public final boolean hasWaiters(ConditionObject condition) {
  • if (!owns(condition)) {
  • throw new IllegalArgumentException("Not owner");
  • }
  • return condition.hasWaiters();
  • }
  • /**
  • * Returns an estimate of the number of threads waiting on the given condition
  • * associated with this synchronizer. Note that because timeouts and interrupts
  • * may occur at any time, the estimate serves only as an upper bound on the
  • * actual number of waiters. This method is designed for use in monitoring of
  • * the system state, not for synchronization control.
  • *
  • * @param condition the condition
  • * @return the estimated number of waiting threads
  • * @throws IllegalMonitorStateException if exclusive synchronization is not held
  • * @throws IllegalArgumentException
  • * if the given condition is not associated with this synchronizer
  • * @throws NullPointerException if the condition is null
  • */
  • public final int getWaitQueueLength(ConditionObject condition) {
  • if (!owns(condition)) {
  • throw new IllegalArgumentException("Not owner");
  • }
  • return condition.getWaitQueueLength();
  • }
  • /**
  • * Returns a collection containing those threads that may be waiting on the
  • * given condition associated with this synchronizer. Because the actual set of
  • * threads may change dynamically while constructing this result, the returned
  • * collection is only a best-effort estimate. The elements of the returned
  • * collection are in no particular order.
  • *
  • * @param condition the condition
  • * @return the collection of threads
  • * @throws IllegalMonitorStateException if exclusive synchronization is not held
  • * @throws IllegalArgumentException
  • * if the given condition is not associated with this synchronizer
  • * @throws NullPointerException if the condition is null
  • */
  • public final Collection getWaitingThreads(ConditionObject condition) {
  • if (!owns(condition)) {
  • throw new IllegalArgumentException("Not owner");
  • }
  • return condition.getWaitingThreads();
  • }
  • /**
  • * Condition implementation for a {@link AbstractQueuedSynchronizer} serving as
  • * the basis of a {@link Lock} implementation.
  • *
  • *

  • * Method documentation for this class describes mechanics, not behavioral
  • * specifications from the point of view of Lock and Condition users. Exported
  • * versions of this class will in general need to be accompanied by
  • * documentation describing condition semantics that rely on those of the
  • * associated {@code AbstractQueuedSynchronizer}.
  • *
  • *

  • * This class is Serializable, but all fields are transient, so deserialized
  • * conditions have no waiters.
  • */
  • public class ConditionObject implements Condition, java.io.Serializable {
  • private static final long serialVersionUID = 1173984872572414699L;
  • /** First node of condition queue. */
  • private transient Node firstWaiter;
  • /** Last node of condition queue. */
  • private transient Node lastWaiter;
  • /**
  • * Creates a new {@code ConditionObject} instance.
  • */
  • public ConditionObject() {
  • }
  • // Internal methods
  • /**
  • * Adds a new waiter to wait queue.
  • *
  • * @return its new wait node
  • */
  • private Node addConditionWaiter() {
  • Node t = lastWaiter;
  • // If lastWaiter is cancelled, clean out.
  • if (t != null && t.waitStatus != Node.CONDITION) {
  • unlinkCancelledWaiters();
  • t = lastWaiter;
  • }
  • Node node = new Node(Thread.currentThread(), Node.CONDITION);
  • if (t == null) {
  • firstWaiter = node;
  • } else {
  • t.nextWaiter = node;
  • }
  • lastWaiter = node;
  • return node;
  • }
  • /**
  • * Removes and transfers nodes until hit non-cancelled one or null. Split out
  • * from signal in part to encourage compilers to inline the case of no waiters.
  • *
  • * @param first (non-null) the first node on condition queue
  • */
  • private void doSignal(Node first) {
  • do {
  • if ((firstWaiter = first.nextWaiter) == null) {
  • lastWaiter = null;
  • }
  • first.nextWaiter = null;
  • } while (!transferForSignal(first) && (first = firstWaiter) != null);
  • }
  • /**
  • * Removes and transfers all nodes.
  • *
  • * @param first (non-null) the first node on condition queue
  • */
  • private void doSignalAll(Node first) {
  • lastWaiter = firstWaiter = null;
  • do {
  • Node next = first.nextWaiter;
  • first.nextWaiter = null;
  • transferForSignal(first);
  • first = next;
  • } while (first != null);
  • }
  • /**
  • * Unlinks cancelled waiter nodes from condition queue. Called only while
  • * holding lock. This is called when cancellation occurred during condition
  • * wait, and upon insertion of a new waiter when lastWaiter is seen to have been
  • * cancelled. This method is needed to avoid garbage retention in the absence of
  • * signals. So even though it may require a full traversal, it comes into play
  • * only when timeouts or cancellations occur in the absence of signals. It
  • * traverses all nodes rather than stopping at a particular target to unlink all
  • * pointers to garbage nodes without requiring many re-traversals during
  • * cancellation storms.
  • */
  • private void unlinkCancelledWaiters() {
  • Node t = firstWaiter;
  • Node trail = null;
  • while (t != null) {
  • Node next = t.nextWaiter;
  • if (t.waitStatus != Node.CONDITION) {
  • t.nextWaiter = null;
  • if (trail == null) {
  • firstWaiter = next;
  • } else {
  • trail.nextWaiter = next;
  • }
  • if (next == null) {
  • lastWaiter = trail;
  • }
  • } else {
  • trail = t;
  • }
  • t = next;
  • }
  • }
  • // public methods
  • /**
  • * Moves the longest-waiting thread, if one exists, from the wait queue for this
  • * condition to the wait queue for the owning lock.
  • *
  • * @throws IllegalMonitorStateException
  • * if {@link #isHeldExclusively} returns {@code false}
  • */
  • public final void signal() {
  • if (!isHeldExclusively()) {
  • throw new IllegalMonitorStateException();
  • }
  • Node first = firstWaiter;
  • if (first != null) {
  • doSignal(first);
  • }
  • }
  • /**
  • * Moves all threads from the wait queue for this condition to the wait queue
  • * for the owning lock.
  • *
  • * @throws IllegalMonitorStateException
  • * if {@link #isHeldExclusively} returns {@code false}
  • */
  • public final void signalAll() {
  • if (!isHeldExclusively()) {
  • throw new IllegalMonitorStateException();
  • }
  • Node first = firstWaiter;
  • if (first != null) {
  • doSignalAll(first);
  • }
  • }
  • /**
  • * Implements uninterruptible condition wait.
  • * 实现不可中断的condition等待
  • *
  • *
    1. *
    2. Save lock state returned by {@link #getState}.
    3. *
    4. Invoke {@link #release} with saved state as argument, throwing
    5. * IllegalMonitorStateException if it fails.
    6. *
    7. Block until signalled.
    8. *
    9. Reacquire by invoking specialized version of {@link #acquire} with saved
    10. * state as argument.
    11. *
    12. */
    13. public final void awaitUninterruptibly() {
    14. Node node = addConditionWaiter();
    15. int savedState = fullyRelease(node);
    16. boolean interrupted = false;
    17. while (!isOnSyncQueue(node)) {
    18. LockSupport.park(this);
    19. if (Thread.interrupted()) {
    20. interrupted = true;
    21. }
    22. }
    23. if (acquireQueued(node, savedState) || interrupted) {
    24. selfInterrupt();
    25. }
    26. }
    27. /*
    28. * For interruptible waits, we need to track whether to throw
    29. * InterruptedException, if interrupted while blocked on condition, versus
    30. * reinterrupt current thread, if interrupted while blocked waiting to
    31. * re-acquire.
    32. */
    33. /** Mode meaning to reinterrupt on exit from wait */
    34. private static final int REINTERRUPT = 1;
    35. /** Mode meaning to throw InterruptedException on exit from wait */
    36. private static final int THROW_IE = -1;
    37. /**
    38. * Checks for interrupt, returning THROW_IE if interrupted before signalled,
    39. * REINTERRUPT if after signalled, or 0 if not interrupted.
    40. */
    41. private int checkInterruptWhileWaiting(Node node) {
    42. return Thread.interrupted() ? (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) : 0;
    43. }
    44. /**
    45. * Throws InterruptedException, reinterrupts current thread, or does nothing,
    46. * depending on mode.
    47. */
    48. private void reportInterruptAfterWait(int interruptMode) throws InterruptedException {
    49. if (interruptMode == THROW_IE) {
    50. throw new InterruptedException();
    51. } else if (interruptMode == REINTERRUPT) {
    52. selfInterrupt();
    53. }
    54. }
    55. /**
    56. * Implements interruptible condition wait.
    57. * 实现可中断的condition等待
    58. *
    59. *
      1. *
      2. If current thread is interrupted, throw InterruptedException.
      3. *
      4. Save lock state returned by {@link #getState}.
      5. *
      6. Invoke {@link #release} with saved state as argument, throwing
      7. * IllegalMonitorStateException if it fails.
      8. *
      9. Block until signalled or interrupted.
      10. *
      11. Reacquire by invoking specialized version of {@link #acquire} with saved
      12. * state as argument.
      13. *
      14. If interrupted while blocked in step 4, throw InterruptedException.
      15. *
      16. */
      17. public final void await() throws InterruptedException {
      18. if (Thread.interrupted()) {
      19. throw new InterruptedException();
      20. }
      21. Node node = addConditionWaiter();
      22. int savedState = fullyRelease(node);
      23. int interruptMode = 0;
      24. while (!isOnSyncQueue(node)) {
      25. LockSupport.park(this);
      26. if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) {
      27. break;
      28. }
      29. }
      30. if (acquireQueued(node, savedState) && interruptMode != THROW_IE) {
      31. interruptMode = REINTERRUPT;
      32. }
      33. if (node.nextWaiter != null) {// clean up if cancelled
      34. unlinkCancelledWaiters();
      35. }
      36. if (interruptMode != 0) {
      37. reportInterruptAfterWait(interruptMode);
      38. }
      39. }
      40. /**
      41. * Implements timed condition wait.
      42. * 实现超时condition等待
      43. *
      44. *
        1. *
        2. If current thread is interrupted, throw InterruptedException.
        3. *
        4. Save lock state returned by {@link #getState}.
        5. *
        6. Invoke {@link #release} with saved state as argument, throwing
        7. * IllegalMonitorStateException if it fails.
        8. *
        9. Block until signalled, interrupted, or timed out.
        10. *
        11. Reacquire by invoking specialized version of {@link #acquire} with saved
        12. * state as argument.
        13. *
        14. If interrupted while blocked in step 4, throw InterruptedException.
        15. *
        16. */
        17. public final long awaitNanos(long nanosTimeout) throws InterruptedException {
        18. if (Thread.interrupted()) {
        19. throw new InterruptedException();
        20. }
        21. Node node = addConditionWaiter();
        22. int savedState = fullyRelease(node);
        23. final long deadline = System.nanoTime() + nanosTimeout;
        24. int interruptMode = 0;
        25. while (!isOnSyncQueue(node)) {
        26. if (nanosTimeout <= 0L) {
        27. transferAfterCancelledWait(node);
        28. break;
        29. }
        30. if (nanosTimeout >= spinForTimeoutThreshold) {
        31. LockSupport.parkNanos(this, nanosTimeout);
        32. }
        33. if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) {
        34. break;
        35. }
        36. nanosTimeout = deadline - System.nanoTime();
        37. }
        38. if (acquireQueued(node, savedState) && interruptMode != THROW_IE) {
        39. interruptMode = REINTERRUPT;
        40. }
        41. if (node.nextWaiter != null) {
        42. unlinkCancelledWaiters();
        43. }
        44. if (interruptMode != 0) {
        45. reportInterruptAfterWait(interruptMode);
        46. }
        47. return deadline - System.nanoTime();
        48. }
        49. /**
        50. * Implements absolute timed condition wait.
        51. * 实现绝对的超时condition等待
        52. *
        53. *
          1. *
          2. If current thread is interrupted, throw InterruptedException.
          3. *
          4. Save lock state returned by {@link #getState}.
          5. *
          6. Invoke {@link #release} with saved state as argument, throwing
          7. * IllegalMonitorStateException if it fails.
          8. *
          9. Block until signalled, interrupted, or timed out.
          10. *
          11. Reacquire by invoking specialized version of {@link #acquire} with saved
          12. * state as argument.
          13. *
          14. If interrupted while blocked in step 4, throw InterruptedException.
          15. *
          16. If timed out while blocked in step 4, return false, else true.
          17. *
          18. */
          19. public final boolean awaitUntil(Date deadline) throws InterruptedException {
          20. long abstime = deadline.getTime();
          21. if (Thread.interrupted()) {
          22. throw new InterruptedException();
          23. }
          24. Node node = addConditionWaiter();
          25. int savedState = fullyRelease(node);
          26. boolean timedout = false;
          27. int interruptMode = 0;
          28. while (!isOnSyncQueue(node)) {
          29. if (System.currentTimeMillis() > abstime) {
          30. timedout = transferAfterCancelledWait(node);
          31. break;
          32. }
          33. LockSupport.parkUntil(this, abstime);
          34. if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) {
          35. break;
          36. }
          37. }
          38. if (acquireQueued(node, savedState) && interruptMode != THROW_IE) {
          39. interruptMode = REINTERRUPT;
          40. }
          41. if (node.nextWaiter != null) {
          42. unlinkCancelledWaiters();
          43. }
          44. if (interruptMode != 0) {
          45. reportInterruptAfterWait(interruptMode);
          46. }
          47. return !timedout;
          48. }
          49. /**
          50. * Implements timed condition wait.
          51. * 实现超时condition等待
          52. *
          53. *
            1. *
            2. If current thread is interrupted, throw InterruptedException.
            3. *
            4. Save lock state returned by {@link #getState}.
            5. *
            6. Invoke {@link #release} with saved state as argument, throwing
            7. * IllegalMonitorStateException if it fails.
            8. *
            9. Block until signalled, interrupted, or timed out.
            10. *
            11. Reacquire by invoking specialized version of {@link #acquire} with saved
            12. * state as argument.
            13. *
            14. If interrupted while blocked in step 4, throw InterruptedException.
            15. *
            16. If timed out while blocked in step 4, return false, else true.
            17. *
            18. */
            19. public final boolean await(long time, TimeUnit unit) throws InterruptedException {
            20. long nanosTimeout = unit.toNanos(time);
            21. if (Thread.interrupted()) {
            22. throw new InterruptedException();
            23. }
            24. Node node = addConditionWaiter();
            25. int savedState = fullyRelease(node);
            26. final long deadline = System.nanoTime() + nanosTimeout;
            27. boolean timedout = false;
            28. int interruptMode = 0;
            29. while (!isOnSyncQueue(node)) {
            30. if (nanosTimeout <= 0L) {
            31. timedout = transferAfterCancelledWait(node);
            32. break;
            33. }
            34. if (nanosTimeout >= spinForTimeoutThreshold) {
            35. LockSupport.parkNanos(this, nanosTimeout);
            36. }
            37. if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) {
            38. break;
            39. }
            40. nanosTimeout = deadline - System.nanoTime();
            41. }
            42. if (acquireQueued(node, savedState) && interruptMode != THROW_IE) {
            43. interruptMode = REINTERRUPT;
            44. }
            45. if (node.nextWaiter != null) {
            46. unlinkCancelledWaiters();
            47. }
            48. if (interruptMode != 0) {
            49. reportInterruptAfterWait(interruptMode);
            50. }
            51. return !timedout;
            52. }
            53. // support for instrumentation
            54. /**
            55. * Returns true if this condition was created by the given synchronization
            56. * object.
            57. *
            58. * @return {@code true} if owned
            59. */
            60. final boolean isOwnedBy(AbstractQueuedSynchronizer sync) {
            61. return sync == AbstractQueuedSynchronizer.this;
            62. }
            63. /**
            64. * Queries whether any threads are waiting on this condition. Implements
            65. * {@link AbstractQueuedSynchronizer#hasWaiters(ConditionObject)}.
            66. *
            67. * @return {@code true} if there are any waiting threads
            68. * @throws IllegalMonitorStateException
            69. * if {@link #isHeldExclusively} returns {@code false}
            70. */
            71. protected final boolean hasWaiters() {
            72. if (!isHeldExclusively()) {
            73. throw new IllegalMonitorStateException();
            74. }
            75. for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
            76. if (w.waitStatus == Node.CONDITION) {
            77. return true;
            78. }
            79. }
            80. return false;
            81. }
            82. /**
            83. * Returns an estimate of the number of threads waiting on this condition.
            84. * Implements {@link AbstractQueuedSynchronizer#getWaitQueueLength(ConditionObject)}.
            85. *
            86. * @return the estimated number of waiting threads
            87. * @throws IllegalMonitorStateException if {@link #isHeldExclusively} returns {@code false}
            88. */
            89. protected final int getWaitQueueLength() {
            90. if (!isHeldExclusively()) {
            91. throw new IllegalMonitorStateException();
            92. }
            93. int n = 0;
            94. for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
            95. if (w.waitStatus == Node.CONDITION) {
            96. ++n;
            97. }
            98. }
            99. return n;
            100. }
            101. /**
            102. * Returns a collection containing those threads that may be waiting on this
            103. * Condition. Implements {@link AbstractQueuedSynchronizer#getWaitingThreads(ConditionObject)}.
            104. *
            105. * @return the collection of threads
            106. * @throws IllegalMonitorStateException if {@link #isHeldExclusively} returns {@code false}
            107. */
            108. protected final Collection getWaitingThreads() {
            109. if (!isHeldExclusively()) {
            110. throw new IllegalMonitorStateException();
            111. }
            112. ArrayList list = new ArrayList();
            113. for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
            114. if (w.waitStatus == Node.CONDITION) {
            115. Thread t = w.thread;
            116. if (t != null) {
            117. list.add(t);
            118. }
            119. }
            120. }
            121. return list;
            122. }
            123. }
            124. /**
            125. * Setup to support compareAndSet. We need to natively implement this here: For
            126. * the sake of permitting future enhancements, we cannot explicitly subclass
            127. * AtomicInteger, which would be efficient and useful otherwise. So, as the
            128. * lesser of evils, we natively implement using hotspot intrinsics API. And
            129. * while we are at it, we do the same for other CASable fields (which could
            130. * otherwise be done with atomic field updaters).
            131. */
            132. private static final Unsafe unsafe = Unsafe.getUnsafe();
            133. private static final long stateOffset;
            134. private static final long headOffset;
            135. private static final long tailOffset;
            136. private static final long waitStatusOffset;
            137. private static final long nextOffset;
            138. static {
            139. try {
            140. stateOffset = unsafe.objectFieldOffset(AbstractQueuedSynchronizer.class.getDeclaredField("state"));
            141. headOffset = unsafe.objectFieldOffset(AbstractQueuedSynchronizer.class.getDeclaredField("head"));
            142. tailOffset = unsafe.objectFieldOffset(AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
            143. waitStatusOffset = unsafe.objectFieldOffset(Node.class.getDeclaredField("waitStatus"));
            144. nextOffset = unsafe.objectFieldOffset(Node.class.getDeclaredField("next"));
            145. } catch (Exception ex) {
            146. throw new Error(ex);
            147. }
            148. }
            149. /**
            150. * CAS head field. Used only by enq.
            151. */
            152. private final boolean compareAndSetHead(Node update) {
            153. return unsafe.compareAndSwapObject(this, headOffset, null, update);
            154. }
            155. /**
            156. * CAS tail field. Used only by enq.
            157. */
            158. private final boolean compareAndSetTail(Node expect, Node update) {
            159. return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
            160. }
            161. /**
            162. * CAS waitStatus field of a node.
            163. */
            164. private static final boolean compareAndSetWaitStatus(Node node, int expect, int update) {
            165. return unsafe.compareAndSwapInt(node, waitStatusOffset, expect, update);
            166. }
            167. /**
            168. * CAS next field of a node.
            169. */
            170. private static final boolean compareAndSetNext(Node node, Node expect, Node update) {
            171. return unsafe.compareAndSwapObject(node, nextOffset, expect, update);
            172. }
            173. }
            174. 如果只是了解多线程的简单用法,AQS可以绕过。


              感谢您的大驾光临!咨询技术、产品、运营和管理相关问题,请关注后留言。欢迎骚扰,不胜荣幸~

            175. 相关阅读:
              手写笔记教会你集成Spring和Mybatis框架(有详细注解)
              什么是浏览器指纹识别
              面试题4:POST 比 GET 安全?
              Latex——双引号的正确输入
              Vue3切换路由白屏刷新后才显示页面内容
              3、传统的Synchronized锁
              毛玻璃 has 选择器卡片悬停效果
              TCP/IP协议分析实验:通过一次下载任务抓包分析
              【性能测试】Jenkins+Ant+Jmeter自动化框架的搭建思路
              学习JFinal
            176. 原文地址:https://blog.csdn.net/lostrex/article/details/127591945