input

library(reshape2)
my_av=melt(av,value.name = "value")
head(my_av)
colnames(my_av)=c('gene','cell_type','value')
ggplot(my_av[round(runif(100,1,nrow(my_av))),],
aes(x=gene,y=value,fill = cell_type),color=cell_type)+
geom_boxplot()
mydata=my_av[round(runif(100,1,nrow(my_av))),]
head(mydata)
p1=ggplot(mydata,aes(x=cell_type,y=gene,fill=value))
p2 <- p1+geom_raster()+scale_fill_gradient2(low="#003366", high="#990033", mid="white")
p2

pheatmap::pheatmap(av[round(runif(100,1,nrow(av))),])

DoHeatmap(sce.all,features = cg)

``go
整体表达量,绘制细胞类型之间的平均值相关性热图 -------------------------------------------------------
dev.off()
FeaturePlot(sce.all,‘Ccl5’)+DimPlot(sce.all,label = T,repel = T)
ggsave(‘Lum-and-umap-celltype.pdf’,width = 5,height = 8)
av <-AverageExpression(sce.all,
group.by = “celltype”,
assays = “RNA”)
av=av[[1]]
head(av)
write.csv(av,file = ‘AverageExpression-celltype.csv’)
cg=names(tail(sort(apply(av, 1, sd)),1000))
pheatmap::pheatmap(cor(av[cg,]),display_numbers = T)
pheatmap::pheatmap(cor(av[cg,]),display_numbers = T,
file = ‘AverageExpression-celltype.pdf’)
dev.off()