• 【概率论与数理统计(研究生课程)】知识点总结6(抽样分布)


    原文地址:【概率论与数理统计(研究生课程)】知识点总结6(抽样分布)

    统计量

    样本均值: X ˉ = 1 n ∑ i = 1 n X i \bar{X}=\frac{1}{n}\sum\limits_{i=1}^{n}X_i Xˉ=n1i=1nXi

    样本方差 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S^2=\frac{1}{n-1}\sum\limits_{i=1}^{n}(X_i-\bar{X})^2 S2=n11i=1n(XiXˉ)2

    样本 k k k阶原点矩: A k = 1 n ∑ i = 1 n X i k A_k=\frac{1}{n}\sum\limits_{i=1}^{n}X_i^k Ak=n1i=1nXik

    样本 k k k阶中心矩: B k = 1 n ∑ i = 1 n ( X i − X ˉ ) k B_k=\frac{1}{n}\sum\limits_{i=1}^{n}(X_i-\bar{X})^k Bk=n1i=1n(XiXˉ)k

    A 1 = X ˉ A_1=\bar{X} A1=Xˉ

    B 2 = n − 1 n S 2 = S n 2 ⟹ n S n 2 = ( n − 1 ) S 2 = ∑ i = 1 n X i 2 − n X ˉ 2 B_2=\frac{n-1}{n}S^2=S^2_n \Longrightarrow nS^2_n=(n-1)S^2=\sum\limits_{i=1}^{n}X_i^2-n\bar{X}^2 B2=nn1S2=Sn2nSn2=(n1)S2=i=1nXi2nXˉ2

    性质:

    1. E ( X ˉ ) = E ( X ) , D ( X ˉ ) = D ( X ) n E(\bar{X})=E(X),D(\bar{X})=\frac{D(X)}{n} E(Xˉ)=E(X),D(Xˉ)=nD(X)

    2. E ( S 2 ) = σ 2 , E ( S n 2 ) = n − 1 n σ 2 E(S^2)=\sigma^2,E(S_n^2)=\frac{n-1}{n}\sigma^2 E(S2)=σ2,E(Sn2)=nn1σ2

    经验分布函数: F n ( x ) = m ( x ) n F_n(x)=\frac{m(x)}{n} Fn(x)=nm(x), m ( x ) m(x) m(x)为样本小于 x x x的个数。

    次序统计量

    顺序统计量: X ( 1 ) = min ⁡ 1 ≤ k ≤ n X k , X ( n ) = max ⁡ 1 ≤ k ≤ n X k X_{(1)}=\min\limits_{1\le k\le n}{X_k},\quad X_{(n)}=\max\limits_{1\le k\le n}{X_k} X(1)=1knminXk,X(n)=1knmaxXk

    极差: D n = X ( n ) − X ( 1 ) D_n=X_{(n)}-X_{(1)} Dn=X(n)X(1)

    密度函数

    f k ( x ) = n ! ( k − 1 ) ! ( n − k ) ! ( F ( x ) ) k − 1 ( 1 − F ( x ) ) n − k f ( x ) f_k(x)=\frac{n!}{(k-1)!(n-k)!}(F(x))^{k-1}(1-F(x))^{n-k}f(x) fk(x)=(k1)!(nk)!n!(F(x))k1(1F(x))nkf(x)

    特别地:当 k = 1 k=1 k=1 k = n k=n k=n时,分别是 X ( 1 ) X_{(1)} X(1) X ( n ) X_{(n)} X(n)的密度函数:
    f 1 ( x ) = n ( 1 − F ( x ) ) n − 1 f ( x ) , f 2 ( x ) = n ( F ( x ) ) n − 1 f ( x ) f_1(x)=n(1-F(x))^{n-1}f(x), \quad f_2(x)=n(F(x))^{n-1}f(x) f1(x)=n(1F(x))n1f(x),f2(x)=n(F(x))n1f(x)

    标准正态分布

    X ∼ N ( 0 , 1 ) X \sim N(0,1) XN(0,1)

    α \alpha α分位点: P { X > Z α } = α , P { X ≤ Z α } = 1 − α P\{X>Z_\alpha\}=\alpha,P\{X\le Z_\alpha\}=1-\alpha P{X>Zα}=α,P{XZα}=1α

    Φ ( Z α ) = 1 − α , Z 1 − α = − Z α \Phi(Z_\alpha)=1-\alpha, Z_{1-\alpha}=-Z_\alpha Φ(Zα)=1α,Z1α=Zα

    卡方分布

    X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn独立同标准正态分布, χ 2 = X 1 2 + X 2 2 + ⋯ + X n 2 ∼ χ 2 ( n ) \chi^2=X_1^2+X_2^2+\cdots+X_n^2 \sim \chi^2(n) χ2=X12+X22++Xn2χ2(n)

    χ 2 = 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ χ 2 \chi^2=\frac{1}{\sigma^2}\sum\limits_{i=1}^{n}(X_i-\mu)^2 \sim \chi^2 χ2=σ21i=1n(Xiμ)2χ2

    X 1 ∼ χ 2 ( n 1 ) , X 2 ∼ χ 2 ( n 2 ) X_1 \sim \chi^2(n_1), X_2 \sim \chi^2(n_2) X1χ2(n1),X2χ2(n2),则 X 1 + X 2 ∼ χ 2 ( n 1 + n 2 ) X_1+X_2 \sim \chi^2(n_1+n_2) X1+X2χ2(n1+n2)

    χ 2 \chi^2 χ2分位点: P { χ 2 > χ α 2 ( n ) } = α P\{\chi^2>\chi^2_\alpha(n)\}=\alpha P{χ2>χα2(n)}=α

    t分布

    X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) X \sim N(0,1), Y \sim \chi^2(n) XN(0,1),Yχ2(n), 且 X 、 Y X、Y XY相互独立,则:
    T = X Y / n ∼ t ( n ) T=\frac{X}{\sqrt{Y/n}} \sim t(n) T=Y/n Xt(n)
    分位点: P { t > t α ( n ) } = α P\{t>t_\alpha(n)\}=\alpha P{t>tα(n)}=α

    n > 45 n>45 n>45时, t α ( n ) ≈ Z α t_\alpha(n)\approx Z_\alpha tα(n)Zα

    F分布

    X ∼ χ 2 ( n ) , Y ∼ χ 2 ( m ) X \sim \chi^2(n), Y \sim \chi^2(m) Xχ2(n),Yχ2(m),且 X 、 Y X、Y XY相互独立,则:
    F = X / n Y / m ∼ F ( n , m ) 1 F ∼ F ( m , n ) F=X/nY/mF(n,m)1FF(m,n) F=Y/mX/nF(n,m)F1F(m,n)
    分位点: P { F > F α ( n 1 , n 2 ) } = α P\{F>F_\alpha(n_1, n_2) \}=\alpha P{F>Fα(n1,n2)}=α
    F 1 − α ( n 1 , n 2 ) = 1 F α ( n 2 , n 1 ) F_{1-\alpha}(n_1, n_2)=\frac{1}{F_\alpha(n_2,n_1)} F1α(n1,n2)=Fα(n2,n1)1

    随机向量

    η = ( η 1 , η 2 , ⋯   , η n ) ′ , X = ( X 1 , X 2 , ⋯   , X n ) ′ \eta=(\eta_1, \eta_2, \cdots, \eta_n)', X=(X_1, X_2,\cdots,X_n)' η=(η1,η2,,ηn),X=(X1,X2,,Xn)

    η = A X , A = ( a i j ) n × n \eta=AX, A=(a_{ij})_{n\times n} η=AX,A=(aij)n×n

    E η = A ( E X ) , D η = A ( D X ) A ′ E\eta=A(EX), D\eta=A(DX)A' Eη=A(EX),Dη=A(DX)A

    样本均值和样本方差的分布

    单个正态总体

    X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2),则:
    X ˉ ∼ N ( μ , σ 2 n ) X ˉ − μ σ / n ∼ N ( 0 , 1 ) ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) n S n 2 σ 2 ∼ χ 2 ( n − 1 ) X ˉ − μ σ / n ( n − 1 ) S 2 σ 2 ( n − 1 ) = X ˉ − μ S / n ∼ t ( n − 1 ) ˉXN(μ,σ2n)ˉXμσ/nN(0,1)(n1)S2σ2χ2(n1)nS2nσ2χ2(n1)ˉXμσ/n(n1)S2σ2(n1)=ˉXμS/nt(n1) Xˉσ/n Xˉμσ2(n1)S2σ2nSn2σ2(n1)(n1)S2 σ/n Xˉμ=S/n XˉμN(μ,nσ2)N(0,1)χ2(n1)χ2(n1)t(n1)

    两个正态总体

    X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn来自正态总体 N ( μ 1 , σ 1 2 ) N(\mu_1,\sigma_1^2) N(μ1,σ12) Y 1 , Y 2 , ⋯   , Y m Y_1,Y_2,\cdots,Y_m Y1,Y2,,Ym来自正态总体 N ( μ 2 , σ 2 2 ) N(\mu_2,\sigma_2^2) N(μ2,σ22) ,则:
    X ˉ = 1 n ∑ i = 1 n X i ∼ N ( μ 1 , σ 1 2 n ) , Y ˉ = 1 m ∑ i = 1 m Y i ∼ N ( μ 2 , σ 2 2 m ) S 1 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 , S 2 2 = 1 m − 1 ∑ i = 1 m ( Y i − Y ˉ ) 2 ( n − 1 ) S 1 2 σ 1 2 ∼ χ 2 ( n − 1 ) , ( m − 1 ) S 2 2 σ 2 2 ∼ χ 2 ( m − 1 ) ( n − 1 ) S 1 2 σ 1 2 ( n − 1 ) ( m − 1 ) S 2 2 σ 2 2 ( m − 1 ) = S 1 2 / σ 1 2 S 2 2 / σ 2 2 ∼ F ( n − 1 , m − 1 ) ˉX=1nni=1XiN(μ1,σ21n),ˉY=1mmi=1YiN(μ2,σ22m)S21=1n1ni=1(XiˉX)2,S22=1m1mi=1(YiˉY)2(n1)S21σ21χ2(n1),(m1)S22σ22χ2(m1)(n1)S21σ21(n1)(m1)S22σ22(m1)=S21/σ21S22/σ22F(n1,m1) Xˉ=n1i=1nXiN(μ1,nσ12),S12=n11i=1n(XiXˉ)2,σ12(n1)S12χ2(n1),σ22(m1)(m1)S22σ12(n1)(n1)S12=S22/σ22S12/σ12Yˉ=m1i=1mYiN(μ2,mσ22)S22=m11i=1m(YiYˉ)2σ22(m1)S22χ2(m1)F(n1,m1)

    σ 1 = σ 2 \sigma_1=\sigma_2 σ1=σ2,则: S 1 2 S 2 2 ∼ F ( n − 1 , m − 1 ) \frac{S_1^2}{S_2^2}\sim F(n-1,m-1) S22S12F(n1,m1)

    X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn来自正态总体 N ( μ 1 , σ 2 ) N(\mu_1,\sigma^2) N(μ1,σ2) Y 1 , Y 2 , ⋯   , Y m Y_1,Y_2,\cdots,Y_m Y1,Y2,,Ym来自正态总体 N ( μ 2 , σ 2 ) N(\mu_2,\sigma^2) N(μ2,σ2) ,则:
    X ˉ = 1 n ∑ i = 1 n X i ∼ N ( μ 1 , σ 2 n ) , Y ˉ = 1 m ∑ i = 1 m Y i ∼ N ( μ 2 , σ 2 m ) S 1 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 , S 2 2 = 1 m − 1 ∑ i = 1 m ( Y i − Y ˉ ) 2 ( n − 1 ) S 1 2 σ 2 ∼ χ 2 ( n − 1 ) , ( m − 1 ) S 2 2 σ 2 ∼ χ 2 ( m − 1 ) ( n − 1 ) S 1 2 σ 2 + ( m − 1 ) S 2 2 σ 2 ∼ χ 2 ( n + m − 2 ) X ˉ − Y ˉ ∼ N ( μ 1 − μ 2 , σ 2 n + σ 2 m ) X ˉ − Y ˉ − ( μ 1 − μ 2 ) σ 2 n + σ 2 m ∼ N ( 0 , 1 ) X ˉ − Y ˉ − ( μ 1 − μ 2 ) σ 2 n + σ 2 m ( n − 1 ) S 1 2 + ( m − 1 ) S 2 2 σ 2 ( n + m − 2 ) = X ˉ − Y ˉ − ( μ 1 − μ 2 ) 1 n + 1 m ( n − 1 ) S 1 2 + ( m − 1 ) S 2 2 ( n + m − 2 ) ∼ t ( n + m − 2 ) ˉX=1nni=1XiN(μ1,σ2n),ˉY=1mmi=1YiN(μ2,σ2m)S21=1n1ni=1(XiˉX)2,S22=1m1mi=1(YiˉY)2(n1)S21σ2χ2(n1),(m1)S22σ2χ2(m1)(n1)S21σ2+(m1)S22σ2χ2(n+m2)ˉXˉYN(μ1μ2,σ2n+σ2m)ˉXˉY(μ1μ2)σ2n+σ2mN(0,1)ˉXˉY(μ1μ2)σ2n+σ2m(n1)S21+(m1)S22σ2(n+m2)=ˉXˉY(μ1μ2)1n+1m(n1)S21+(m1)S22(n+m2)t(n+m2) Xˉ=n1i=1nXiN(μ1,nσ2),S12=n11i=1n(XiXˉ)2,σ2(n1)S12χ2(n1),σ2(n1)S12+σ2(m1)S22XˉYˉnσ2+mσ2 XˉYˉ(μ1μ2)σ2(n+m2)(n1)S12+(m1)S22 nσ2+mσ2 XˉYˉ(μ1μ2)Yˉ=m1i=1mYiN(μ2,mσ2)S22=m11i=1m(YiYˉ)2σ2(m1)S22χ2(m1)χ2(n+m2)N(μ1μ2,nσ2+mσ2)N(0,1)=n1+m1 (n+m2)(n1)S12+(m1)S22 XˉYˉ(μ1μ2)t(n+m2)

  • 相关阅读:
    VUE 程序的执行过程(非常非常重要)
    linux同步机制-completion
    神经网络学说的主要观点,神经网络宏观解释包括
    vue - Vue组件化编程
    触发迅雷下载
    LeetCode力扣刷题——简单易懂的贪心算法
    c#多线程同步执行
    RestTemplate (二) : RestOperations、具体API使用、RestTemplate原理介绍、使用案例
    LibPca--Packet Capture library
    想进大厂, Jira 管理平台你会用么?
  • 原文地址:https://blog.csdn.net/weixin_46334596/article/details/127453930