原文地址:【概率论与数理统计(研究生课程)】知识点总结6(抽样分布)
样本均值: X ˉ = 1 n ∑ i = 1 n X i \bar{X}=\frac{1}{n}\sum\limits_{i=1}^{n}X_i Xˉ=n1i=1∑nXi
样本方差: S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S^2=\frac{1}{n-1}\sum\limits_{i=1}^{n}(X_i-\bar{X})^2 S2=n−11i=1∑n(Xi−Xˉ)2
样本 k k k阶原点矩: A k = 1 n ∑ i = 1 n X i k A_k=\frac{1}{n}\sum\limits_{i=1}^{n}X_i^k Ak=n1i=1∑nXik
样本 k k k阶中心矩: B k = 1 n ∑ i = 1 n ( X i − X ˉ ) k B_k=\frac{1}{n}\sum\limits_{i=1}^{n}(X_i-\bar{X})^k Bk=n1i=1∑n(Xi−Xˉ)k
A 1 = X ˉ A_1=\bar{X} A1=Xˉ
B 2 = n − 1 n S 2 = S n 2 ⟹ n S n 2 = ( n − 1 ) S 2 = ∑ i = 1 n X i 2 − n X ˉ 2 B_2=\frac{n-1}{n}S^2=S^2_n \Longrightarrow nS^2_n=(n-1)S^2=\sum\limits_{i=1}^{n}X_i^2-n\bar{X}^2 B2=nn−1S2=Sn2⟹nSn2=(n−1)S2=i=1∑nXi2−nXˉ2
性质:
E ( X ˉ ) = E ( X ) , D ( X ˉ ) = D ( X ) n E(\bar{X})=E(X),D(\bar{X})=\frac{D(X)}{n} E(Xˉ)=E(X),D(Xˉ)=nD(X)
E ( S 2 ) = σ 2 , E ( S n 2 ) = n − 1 n σ 2 E(S^2)=\sigma^2,E(S_n^2)=\frac{n-1}{n}\sigma^2 E(S2)=σ2,E(Sn2)=nn−1σ2
经验分布函数: F n ( x ) = m ( x ) n F_n(x)=\frac{m(x)}{n} Fn(x)=nm(x), m ( x ) m(x) m(x)为样本小于 x x x的个数。
顺序统计量: X ( 1 ) = min 1 ≤ k ≤ n X k , X ( n ) = max 1 ≤ k ≤ n X k X_{(1)}=\min\limits_{1\le k\le n}{X_k},\quad X_{(n)}=\max\limits_{1\le k\le n}{X_k} X(1)=1≤k≤nminXk,X(n)=1≤k≤nmaxXk
极差: D n = X ( n ) − X ( 1 ) D_n=X_{(n)}-X_{(1)} Dn=X(n)−X(1)
f k ( x ) = n ! ( k − 1 ) ! ( n − k ) ! ( F ( x ) ) k − 1 ( 1 − F ( x ) ) n − k f ( x ) f_k(x)=\frac{n!}{(k-1)!(n-k)!}(F(x))^{k-1}(1-F(x))^{n-k}f(x) fk(x)=(k−1)!(n−k)!n!(F(x))k−1(1−F(x))n−kf(x)
特别地:当
k
=
1
k=1
k=1和
k
=
n
k=n
k=n时,分别是
X
(
1
)
X_{(1)}
X(1)和
X
(
n
)
X_{(n)}
X(n)的密度函数:
f
1
(
x
)
=
n
(
1
−
F
(
x
)
)
n
−
1
f
(
x
)
,
f
2
(
x
)
=
n
(
F
(
x
)
)
n
−
1
f
(
x
)
f_1(x)=n(1-F(x))^{n-1}f(x), \quad f_2(x)=n(F(x))^{n-1}f(x)
f1(x)=n(1−F(x))n−1f(x),f2(x)=n(F(x))n−1f(x)
X ∼ N ( 0 , 1 ) X \sim N(0,1) X∼N(0,1)
上 α \alpha α分位点: P { X > Z α } = α , P { X ≤ Z α } = 1 − α P\{X>Z_\alpha\}=\alpha,P\{X\le Z_\alpha\}=1-\alpha P{X>Zα}=α,P{X≤Zα}=1−α
Φ ( Z α ) = 1 − α , Z 1 − α = − Z α \Phi(Z_\alpha)=1-\alpha, Z_{1-\alpha}=-Z_\alpha Φ(Zα)=1−α,Z1−α=−Zα
X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_n X1,X2,⋯,Xn独立同标准正态分布, χ 2 = X 1 2 + X 2 2 + ⋯ + X n 2 ∼ χ 2 ( n ) \chi^2=X_1^2+X_2^2+\cdots+X_n^2 \sim \chi^2(n) χ2=X12+X22+⋯+Xn2∼χ2(n)
χ 2 = 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ χ 2 \chi^2=\frac{1}{\sigma^2}\sum\limits_{i=1}^{n}(X_i-\mu)^2 \sim \chi^2 χ2=σ21i=1∑n(Xi−μ)2∼χ2
X 1 ∼ χ 2 ( n 1 ) , X 2 ∼ χ 2 ( n 2 ) X_1 \sim \chi^2(n_1), X_2 \sim \chi^2(n_2) X1∼χ2(n1),X2∼χ2(n2),则 X 1 + X 2 ∼ χ 2 ( n 1 + n 2 ) X_1+X_2 \sim \chi^2(n_1+n_2) X1+X2∼χ2(n1+n2)
χ 2 \chi^2 χ2分位点: P { χ 2 > χ α 2 ( n ) } = α P\{\chi^2>\chi^2_\alpha(n)\}=\alpha P{χ2>χα2(n)}=α
X
∼
N
(
0
,
1
)
,
Y
∼
χ
2
(
n
)
X \sim N(0,1), Y \sim \chi^2(n)
X∼N(0,1),Y∼χ2(n), 且
X
、
Y
X、Y
X、Y相互独立,则:
T
=
X
Y
/
n
∼
t
(
n
)
T=\frac{X}{\sqrt{Y/n}} \sim t(n)
T=Y/nX∼t(n)
分位点:
P
{
t
>
t
α
(
n
)
}
=
α
P\{t>t_\alpha(n)\}=\alpha
P{t>tα(n)}=α
当 n > 45 n>45 n>45时, t α ( n ) ≈ Z α t_\alpha(n)\approx Z_\alpha tα(n)≈Zα
X
∼
χ
2
(
n
)
,
Y
∼
χ
2
(
m
)
X \sim \chi^2(n), Y \sim \chi^2(m)
X∼χ2(n),Y∼χ2(m),且
X
、
Y
X、Y
X、Y相互独立,则:
F
=
X
/
n
Y
/
m
∼
F
(
n
,
m
)
1
F
∼
F
(
m
,
n
)
F=X/nY/m∼F(n,m)1F∼F(m,n)
F=Y/mX/n∼F(n,m)F1∼F(m,n)
分位点:
P
{
F
>
F
α
(
n
1
,
n
2
)
}
=
α
P\{F>F_\alpha(n_1, n_2) \}=\alpha
P{F>Fα(n1,n2)}=α
F
1
−
α
(
n
1
,
n
2
)
=
1
F
α
(
n
2
,
n
1
)
F_{1-\alpha}(n_1, n_2)=\frac{1}{F_\alpha(n_2,n_1)}
F1−α(n1,n2)=Fα(n2,n1)1
η = ( η 1 , η 2 , ⋯ , η n ) ′ , X = ( X 1 , X 2 , ⋯ , X n ) ′ \eta=(\eta_1, \eta_2, \cdots, \eta_n)', X=(X_1, X_2,\cdots,X_n)' η=(η1,η2,⋯,ηn)′,X=(X1,X2,⋯,Xn)′
η = A X , A = ( a i j ) n × n \eta=AX, A=(a_{ij})_{n\times n} η=AX,A=(aij)n×n
E η = A ( E X ) , D η = A ( D X ) A ′ E\eta=A(EX), D\eta=A(DX)A' Eη=A(EX),Dη=A(DX)A′
X
1
,
X
2
,
⋯
,
X
n
X_1,X_2,\cdots,X_n
X1,X2,⋯,Xn来自正态总体
N
(
μ
,
σ
2
)
N(\mu,\sigma^2)
N(μ,σ2),则:
X
ˉ
∼
N
(
μ
,
σ
2
n
)
X
ˉ
−
μ
σ
/
n
∼
N
(
0
,
1
)
(
n
−
1
)
S
2
σ
2
∼
χ
2
(
n
−
1
)
n
S
n
2
σ
2
∼
χ
2
(
n
−
1
)
X
ˉ
−
μ
σ
/
n
(
n
−
1
)
S
2
σ
2
(
n
−
1
)
=
X
ˉ
−
μ
S
/
n
∼
t
(
n
−
1
)
ˉX∼N(μ,σ2n)ˉX−μσ/√n∼N(0,1)(n−1)S2σ2∼χ2(n−1)nS2nσ2∼χ2(n−1)ˉX−μσ/√n√(n−1)S2σ2(n−1)=ˉX−μS/√n∼t(n−1)
Xˉσ/nXˉ−μσ2(n−1)S2σ2nSn2σ2(n−1)(n−1)S2σ/nXˉ−μ=S/nXˉ−μ∼N(μ,nσ2)∼N(0,1)∼χ2(n−1)∼χ2(n−1)∼t(n−1)
X
1
,
X
2
,
⋯
,
X
n
X_1,X_2,\cdots,X_n
X1,X2,⋯,Xn来自正态总体
N
(
μ
1
,
σ
1
2
)
N(\mu_1,\sigma_1^2)
N(μ1,σ12),
Y
1
,
Y
2
,
⋯
,
Y
m
Y_1,Y_2,\cdots,Y_m
Y1,Y2,⋯,Ym来自正态总体
N
(
μ
2
,
σ
2
2
)
N(\mu_2,\sigma_2^2)
N(μ2,σ22) ,则:
X
ˉ
=
1
n
∑
i
=
1
n
X
i
∼
N
(
μ
1
,
σ
1
2
n
)
,
Y
ˉ
=
1
m
∑
i
=
1
m
Y
i
∼
N
(
μ
2
,
σ
2
2
m
)
S
1
2
=
1
n
−
1
∑
i
=
1
n
(
X
i
−
X
ˉ
)
2
,
S
2
2
=
1
m
−
1
∑
i
=
1
m
(
Y
i
−
Y
ˉ
)
2
(
n
−
1
)
S
1
2
σ
1
2
∼
χ
2
(
n
−
1
)
,
(
m
−
1
)
S
2
2
σ
2
2
∼
χ
2
(
m
−
1
)
(
n
−
1
)
S
1
2
σ
1
2
(
n
−
1
)
(
m
−
1
)
S
2
2
σ
2
2
(
m
−
1
)
=
S
1
2
/
σ
1
2
S
2
2
/
σ
2
2
∼
F
(
n
−
1
,
m
−
1
)
ˉX=1nn∑i=1Xi∼N(μ1,σ21n),ˉY=1mm∑i=1Yi∼N(μ2,σ22m)S21=1n−1n∑i=1(Xi−ˉX)2,S22=1m−1m∑i=1(Yi−ˉY)2(n−1)S21σ21∼χ2(n−1),(m−1)S22σ22∼χ2(m−1)(n−1)S21σ21(n−1)(m−1)S22σ22(m−1)=S21/σ21S22/σ22∼F(n−1,m−1)
Xˉ=n1i=1∑nXi∼N(μ1,nσ12),S12=n−11i=1∑n(Xi−Xˉ)2,σ12(n−1)S12∼χ2(n−1),σ22(m−1)(m−1)S22σ12(n−1)(n−1)S12=S22/σ22S12/σ12Yˉ=m1i=1∑mYi∼N(μ2,mσ22)S22=m−11i=1∑m(Yi−Yˉ)2σ22(m−1)S22∼χ2(m−1)∼F(n−1,m−1)
若 σ 1 = σ 2 \sigma_1=\sigma_2 σ1=σ2,则: S 1 2 S 2 2 ∼ F ( n − 1 , m − 1 ) \frac{S_1^2}{S_2^2}\sim F(n-1,m-1) S22S12∼F(n−1,m−1)
X
1
,
X
2
,
⋯
,
X
n
X_1,X_2,\cdots,X_n
X1,X2,⋯,Xn来自正态总体
N
(
μ
1
,
σ
2
)
N(\mu_1,\sigma^2)
N(μ1,σ2),
Y
1
,
Y
2
,
⋯
,
Y
m
Y_1,Y_2,\cdots,Y_m
Y1,Y2,⋯,Ym来自正态总体
N
(
μ
2
,
σ
2
)
N(\mu_2,\sigma^2)
N(μ2,σ2) ,则:
X
ˉ
=
1
n
∑
i
=
1
n
X
i
∼
N
(
μ
1
,
σ
2
n
)
,
Y
ˉ
=
1
m
∑
i
=
1
m
Y
i
∼
N
(
μ
2
,
σ
2
m
)
S
1
2
=
1
n
−
1
∑
i
=
1
n
(
X
i
−
X
ˉ
)
2
,
S
2
2
=
1
m
−
1
∑
i
=
1
m
(
Y
i
−
Y
ˉ
)
2
(
n
−
1
)
S
1
2
σ
2
∼
χ
2
(
n
−
1
)
,
(
m
−
1
)
S
2
2
σ
2
∼
χ
2
(
m
−
1
)
(
n
−
1
)
S
1
2
σ
2
+
(
m
−
1
)
S
2
2
σ
2
∼
χ
2
(
n
+
m
−
2
)
X
ˉ
−
Y
ˉ
∼
N
(
μ
1
−
μ
2
,
σ
2
n
+
σ
2
m
)
X
ˉ
−
Y
ˉ
−
(
μ
1
−
μ
2
)
σ
2
n
+
σ
2
m
∼
N
(
0
,
1
)
X
ˉ
−
Y
ˉ
−
(
μ
1
−
μ
2
)
σ
2
n
+
σ
2
m
(
n
−
1
)
S
1
2
+
(
m
−
1
)
S
2
2
σ
2
(
n
+
m
−
2
)
=
X
ˉ
−
Y
ˉ
−
(
μ
1
−
μ
2
)
1
n
+
1
m
(
n
−
1
)
S
1
2
+
(
m
−
1
)
S
2
2
(
n
+
m
−
2
)
∼
t
(
n
+
m
−
2
)
ˉX=1nn∑i=1Xi∼N(μ1,σ2n),ˉY=1mm∑i=1Yi∼N(μ2,σ2m)S21=1n−1n∑i=1(Xi−ˉX)2,S22=1m−1m∑i=1(Yi−ˉY)2(n−1)S21σ2∼χ2(n−1),(m−1)S22σ2∼χ2(m−1)(n−1)S21σ2+(m−1)S22σ2∼χ2(n+m−2)ˉX−ˉY∼N(μ1−μ2,σ2n+σ2m)ˉX−ˉY−(μ1−μ2)√σ2n+σ2m∼N(0,1)ˉX−ˉY−(μ1−μ2)√σ2n+σ2m√(n−1)S21+(m−1)S22σ2(n+m−2)=ˉX−ˉY−(μ1−μ2)√1n+1m√(n−1)S21+(m−1)S22(n+m−2)∼t(n+m−2)
Xˉ=n1i=1∑nXi∼N(μ1,nσ2),S12=n−11i=1∑n(Xi−Xˉ)2,σ2(n−1)S12∼χ2(n−1),σ2(n−1)S12+σ2(m−1)S22Xˉ−Yˉnσ2+mσ2Xˉ−Yˉ−(μ1−μ2)σ2(n+m−2)(n−1)S12+(m−1)S22nσ2+mσ2Xˉ−Yˉ−(μ1−μ2)Yˉ=m1i=1∑mYi∼N(μ2,mσ2)S22=m−11i=1∑m(Yi−Yˉ)2σ2(m−1)S22∼χ2(m−1)∼χ2(n+m−2)∼N(μ1−μ2,nσ2+mσ2)∼N(0,1)=n1+m1(n+m−2)(n−1)S12+(m−1)S22Xˉ−Yˉ−(μ1−μ2)∼t(n+m−2)