• 【证明】线性空间的基本性质


    性质 1 零向量是唯一的。

    证明 设 0 1 , 0 2 \boldsymbol{0}_1, \boldsymbol{0}_2 01,02 是线性空间 V V V 中的两个零向量,即对任何 α ∈ V \boldsymbol{\alpha} \in V αV,有
    α + 0 1 = α α + 0 2 = α

    (1)α+01=α(2)α+02=α" role="presentation">(1)α+01=α(2)α+02=α
    α+01=αα+02=α(1)(2)
    ( 1 ) (1) (1) 代入 ( 2 ) (2) (2) ( α + 0 1 ) + 0 2 = ( α + 0 1 ) (\boldsymbol{\alpha} + \boldsymbol{0}_1) + \boldsymbol{0}_2 = (\boldsymbol{\alpha} + \boldsymbol{0}_1) (α+01)+02=(α+01),将 ( 2 ) (2) (2) 代入 ( 1 ) (1) (1) ( α + 0 2 ) + 0 1 = ( α + 0 2 ) (\boldsymbol{\alpha} + \boldsymbol{0}_2) + \boldsymbol{0}_1 = (\boldsymbol{\alpha} + \boldsymbol{0}_2) (α+02)+01=(α+02),进而有
    0 1 + 0 2 = 0 1 , 0 2 + 0 1 = 0 2 \boldsymbol{0}_1 + \boldsymbol{0}_2 = \boldsymbol{0}_1, \hspace{1em} \boldsymbol{0}_2 + \boldsymbol{0}_1 = \boldsymbol{0}_2 01+02=01,02+01=02
    所以
    0 1 = 0 1 + 0 2 = 0 2 + 0 1 = 0 2 \boldsymbol{0}_1 = \boldsymbol{0}_1 + \boldsymbol{0}_2 = \boldsymbol{0}_2 + \boldsymbol{0}_1 = \boldsymbol{0}_2 01=01+02=02+01=02
    得证。

    性质 2 任一向量的负向量是唯一的, α \boldsymbol{\alpha} α 的负向量记作 − α - \boldsymbol{\alpha} α

    证明 设 β , γ \boldsymbol{\beta}, \boldsymbol{\gamma} β,γ α \boldsymbol{\alpha} α 的负向量,即 α + β = 0 \boldsymbol{\alpha} + \boldsymbol{\beta} = \boldsymbol{0} α+β=0 α + γ = 0 \boldsymbol{\alpha} + \boldsymbol{\gamma} = \boldsymbol{0} α+γ=0。于是
    β = β + 0 = β + ( α + γ ) = γ + ( α + β ) = γ + 0 = γ \boldsymbol{\beta} = \boldsymbol{\beta} + \boldsymbol{0} = \boldsymbol{\beta} + (\boldsymbol{\alpha} + \boldsymbol{\gamma}) = \boldsymbol{\gamma} + (\boldsymbol{\alpha} + \boldsymbol{\beta}) = \boldsymbol{\gamma} + \boldsymbol{0} = \boldsymbol{\gamma} β=β+0=β+(α+γ)=γ+(α+β)=γ+0=γ
    得证。

    性质 3  0 α = 0 0 \boldsymbol{\alpha} = \boldsymbol{0} 0α=0

    证明 因为 $\boldsymbol{\alpha} + 0 \boldsymbol{\alpha} = 1\boldsymbol{\alpha} + 0 \boldsymbol{\alpha} = (1 + 0) \boldsymbol{\alpha} = 1\boldsymbol{\alpha} = \boldsymbol{\alpha} $,所以 0 α = 0 0 \boldsymbol{\alpha} = \boldsymbol{0} 0α=0。得证。

    性质 4  ( − 1 ) α = − α (-1)\boldsymbol{\alpha} = - \boldsymbol{\alpha} (1)α=α

    证明 因为 α + ( − 1 ) α = 1 α + ( − 1 ) α = [ 1 + ( − 1 ) ] α = 0 α = 0 \boldsymbol{\alpha} + (-1)\boldsymbol{\alpha} = 1 \boldsymbol{\alpha} + (-1)\boldsymbol{\alpha} = [1 + (-1)] \boldsymbol{\alpha} = 0 \boldsymbol{\alpha} = \boldsymbol{0} α+(1)α=1α+(1)α=[1+(1)]α=0α=0,所以 ( − 1 ) α = − α (-1)\boldsymbol{\alpha} = - \boldsymbol{\alpha} (1)α=α。得证。

    性质 5  λ 0 = 0 \lambda \boldsymbol{0} = \boldsymbol{0} λ0=0

    证明 根据性质 4,有 λ 0 = λ [ α + ( − 1 ) α ] = 0 α = 0 \lambda \boldsymbol{0} = \lambda [\boldsymbol{\alpha} + (-1)\boldsymbol{\alpha}] = 0 \boldsymbol{\alpha} = \boldsymbol{0} λ0=λ[α+(1)α]=0α=0。得证。

    性质 6 如果 λ α = 0 \lambda \boldsymbol{\alpha} = \boldsymbol{0} λα=0,则 λ = 0 \lambda = 0 λ=0 α = 0 \boldsymbol{\alpha} = \boldsymbol{0} α=0

    证明 若 λ ≠ 0 \lambda \ne 0 λ=0,在 λ α = 0 \lambda \boldsymbol{\alpha} = \boldsymbol{0} λα=0 两边乘 1 λ \frac{1}{\lambda} λ1,得
    1 λ ( λ α ) = 1 λ 0 = 0 \frac{1}{\lambda} (\lambda \boldsymbol{\alpha}) = \frac{1}{\lambda} \boldsymbol{0} = \boldsymbol{0} λ1(λα)=λ10=0

    1 λ ( λ α ) = ( 1 λ λ ) α = 1 α = α \frac{1}{\lambda} (\lambda \boldsymbol{\alpha}) = (\frac{1}{\lambda} \lambda) \boldsymbol{\alpha} = 1 \boldsymbol{\alpha} = \boldsymbol{\alpha} λ1(λα)=(λ1λ)α=1α=α
    所以有 α = 0 \boldsymbol{\alpha} = \boldsymbol{0} α=0。得证。

  • 相关阅读:
    行业追踪,2023-09-27
    11.21序列检测,状态机比较与代码,按键消抖原理
    2023年第十六届山东省职业院校技能大赛中职组“网络安全”赛项规程
    2023/9/19 -- C++/QT
    跨境独立站运营攻略
    计算机网络体系结构
    应用层协议的实现
    IPWorks 2022 核心网络组件 最新版 Crack
    深度学习-一个简单的深度学习推导
    python列表基本运算
  • 原文地址:https://blog.csdn.net/Changxing_J/article/details/127444578