给你一个长度为 2^n 的数组 A。
一开始有一个
0
0
0 数,然后每次你随机给它异或上 0~2^n-1 中的数,随机到
i
i
i 的概率跟 Ai+1 成正比。
然后对于 0~2^n-1 每个数问你第一次变成这个数的期望异或次数。
考虑使用生成函数, f i f_i fi 为答案。
f
0
=
0
f_0=0
f0=0
f
i
=
1
+
∑
j
=
0
2
n
−
1
f
i
⊕
j
p
j
f_i=1+\sum\limits_{j=0}^{2^n-1}f_{i\oplus j}p_j
fi=1+j=0∑2n−1fi⊕jpj
F
+
f
0
′
=
I
+
F
∗
P
F+f'_0=I+F*P
F+f0′=I+F∗P
I = ∑ i = 0 2 n − 1 x i I=\sum\limits_{i=0}^{2^n-1}x^i I=i=0∑2n−1xi
求
f
0
′
f'_0
f0′:
F
=
∑
i
=
0
∞
f
i
x
i
F=\sum\limits_{i=0}^{\infty}f_ix^i
F=i=0∑∞fixi
S
(
F
)
=
∑
i
=
0
∞
f
i
S(F)=\sum\limits_{i=0}^{\infty} f_i
S(F)=i=0∑∞fi
S
(
F
)
+
f
0
′
=
S
(
I
)
+
S
(
F
)
∗
S
(
P
)
S(F)+f'_0=S(I)+S(F)*S(P)
S(F)+f0′=S(I)+S(F)∗S(P)
S
(
P
)
=
1
,
S
(
I
)
=
2
n
S(P)=1,S(I)=2^n
S(P)=1,S(I)=2n
f
0
′
=
2
n
f_0'=2^n
f0′=2n
F
+
2
n
=
I
+
F
∗
P
F+2^n=I+F*P
F+2n=I+F∗P
F
(
P
−
1
)
=
2
n
−
I
,
F
=
2
n
−
I
P
−
1
F(P-1)=2^n-I,F=\dfrac{2^n-I}{P-1}
F(P−1)=2n−I,F=P−12n−I
但是有一个问题就是
[
x
0
]
(
P
−
1
)
[x^0](P-1)
[x0](P−1) 它 FWT 之后会是
0
0
0。
那就别管第
0
0
0 位,当他是
0
0
0 然后 IFWT。
那我们还有一个限制条件是
f
0
=
0
f_0=0
f0=0,那你 IFWT 之后
0
0
0 会赋值到的位置是所有,但你现在没有了,那你
f
0
f_0
f0 现在的值是
−
x
-x
−x,那你给所有位置的值都加上
x
x
x,就相当于处理了
0
0
0 位置的贡献了。
#include
#define ll long long
#define mo 998244353
using namespace std;
const int N = 1 << 18;
int n;
ll p[N], a[N], sum, I[N], f[N], inv2;
ll ksm(ll x, ll y) {
ll re = 1;
while (y) {
if (y & 1) re = re * x % mo;
x = x * x % mo; y >>= 1;
}
return re;
}
void FWT(ll *f, int n, int op) {
for (int mid = 1; mid < n; mid <<= 1)
for (int R = (mid << 1), j = 0; j < n; j += R)
for (int k = 0; k < mid; k++) {
ll x = f[j | k], y = f[j | mid | k];
if (op == 1) {
f[j | k] = (x + y) % mo;
f[j | mid | k] = (x - y + mo) % mo;
}
else {
f[j | k] = (x + y) * inv2 % mo;
f[j | mid | k] = (x - y + mo) * inv2 % mo;
}
}
}
int main() {
inv2 = (mo + 1) / 2;
scanf("%d", &n);
for (int i = 0; i < (1 << n); i++) scanf("%lld", &a[i]), (sum += a[i]) %= mo;
sum = ksm(sum, mo - 2); for (int i = 0; i < (1 << n); i++) p[i] = a[i] * sum % mo;
p[0] = (p[0] - 1 + mo) % mo;
I[0] = (1 << n); for (int i = 0; i < (1 << n); i++) I[i] = (I[i] - 1 + mo) % mo;
FWT(p, 1 << n, 1); FWT(I, 1 << n, 1);
for (int i = 1; i < (1 << n); i++) f[i] = I[i] * ksm(p[i], mo - 2) % mo;
FWT(f, 1 << n, -1);
ll fix = f[0];
for (int i = 0; i < (1 << n); i++) f[i] = (f[i] - fix + mo) % mo;
for (int i = 0; i < (1 << n); i++) printf("%lld\n", f[i]);
return 0;
}