当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将java堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。 比如在新生代中,每次收集都会有大量对象(近99%)死去,所以可以选择复制算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选 择“标记-清除”或“标记-整理”算法进行垃圾收集。注意,“标记-清除”或“标记-整理”算法会比复制算法慢10倍以上。
基于不同对象的生命周期不一样。
为了解决效率问题,“复制”收集算法出现了。它可以将内存分为大小相同的两块,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收。
使用场景:新生代,复制算法的高效性是建立在存活对象少、垃圾对象多的前提下的,因为新生代对象生存时间比较短,80%都是要回收的对象
算法分为“标记”和“清除”阶段:标记存活的对象, 统一回收所有未被标记的对象(一般选择这种,标记的对象与jvm的实现不同,有的是标记垃圾对象,有的是标记存活对象,hotspot虚拟机标记存活对象);也可以反过来,标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象 。它是最基础的收集算法,比较简单,但是会带来两个明显的问题:
**1. 效率问题 (如果需要标记的对象太多,效率不高) **
2. 空间问题(标记清除后会产生大量不连续的碎片)
根据老年代的特点特出的一种标记算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象回 收,而是让所有存活的对象向一端移动,然后直接清理掉端边界以外的内存。
缺点:首先,要在内存中移动对象,这很慢很低效,并且,在移动时,你还要考虑到并发问题(假如用户线程正在使用你移动的对象怎么办),所以你需要STW,那么此时又更慢了。
使用场景:老年代,使用与老年代这种存活多死亡少的垃圾收集,因为死的少大概率意味着移动的也少

Serial(串行)收集器是最基本、历史最悠久的垃圾收集器了。大家看名字就知道这个收集器是一个单线程收集器了。它 的 “单线程” 的意义不仅仅意味着它只会使用一条垃圾收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集工作的时候必须暂停其他所有的工作线程( “Stop The World” ),直到它收集结束。
新生代采用复制算法,老年代采用标记-整理算法。
Parallel收集器其实就是Serial收集器的多线程版本,除了使用多线程进行垃圾收集外,其余行为(控制参数、收集算 法、回收策略等等)和Serial收集器类似。默认的收集线程数跟cpu核数相同,当然也可以用参数(
-XX:ParallelGCThreads)指定收集线程数,但是一般不推荐修改。
Parallel Scavenge收集器关注点是吞吐量(高效率的利用CPU)。CMS等垃圾收集器的关注点更多的是用户线程的停 顿时间(提高用户体验)。所谓吞吐量就是CPU中用于运行用户代码的时间与CPU总消耗时间的比值。
Parallel Scavenge收集器提供了很多参数供用户找到最合适的停顿时间或最大吞吐量,如果对于收集器运作不太了解的话,可以 选择把内存管理优化交给虚拟机去完成也是一个不错的选择。
新生代采用复制算法,老年代采用标记-整理算法。
ParNew收集器其实跟Parallel收集器很类似,区别主要在于它可以和CMS收集器配合使用。
历史遗留的原因:新生代Parallel收集器无法与老年代CMS垃圾收集器结合使用
新生代采用复制算法,老年代采用标记-整理算法。
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它非常符合在注重用户体验的应用上使用,它是HotSpot虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程 (基本上)同时工作。
从名字中的Mark Sweep这两个词可以看出,CMS收集器是一种 “标记-清除”算法实现的,它的运作过程相比于前面几种垃圾收集器来说更加复杂一些。整个过程分为四个步骤:
public class ClassLoaderTest1 {
public static final int count= 1;
public User user = new User();
public static void main(String[] args) {
ClassLoaderTest1 loaderTest1 = new ClassLoaderTest1();
loaderTest1.calculate();
}
}
loaderTest1为gc root,只标记loaderTest1引用的对象,loaderTest1中的成员变量user是不会标记的
并发标记阶段对象的变化:非垃圾对象->垃圾对象,垃圾对象->非垃圾对象,对象的状态在并发标记阶段是会发生变化的,重新标记STW

public class ClassLoaderTest1 {
public static final int count= 1;
public User user = new User();
public static void main(String[] args) {
ClassLoaderTest1 loaderTest1 = new ClassLoaderTest1();
loaderTest1.calculate();
}
}
loaderTest1引用的对象在老年代,为大对象,loaderTest1的成员变量user的引用对象在新生代,即存在老年代对新生代的跨代引用
8. -XX:+CMSParallellnitialMarkEnabled:表示在初始标记的时候多线程执行,缩短STW
9. -XX:+CMSParallelRemarkEnabled:在重新标记的时候多线程执行,缩短STW;
对于8G内存,我们一般是分配4G内存给JVM,正常的JVM参数配置如下:
jvm内存是物理内存的一半: 1:2
整个堆中的内存:新生代:老年代=1:2
新生代中eden:from:to=8:1:1
‐Xms3072M ‐Xmx3072M ‐Xss1M ‐XX:MetaspaceSize=256M ‐XX:MaxMetaspaceSize=256M
‐XX:SurvivorRatio=8
这样设置可能会由于动态对象年龄判断原则导致频繁full gc
于是我们可以更新下JVM参数设置
‐Xms3072M ‐Xmx3072M ‐Xmn2048M ‐Xss1M ‐XX:MetaspaceSize=256M ‐XX:MaxMetaspaceSize=256M
‐XX:SurvivorRatio=8

‐Xms3072M ‐Xmx3072M ‐Xmn2048M ‐Xss1M ‐XX:MetaspaceSize=256M ‐XX:MaxMetaspaceSize=256M
‐XX:SurvivorRatio=8 2 ‐XX:MaxTenuringThreshold=5 ‐XX:PretenureSizeThreshold=1M
对于JDK8默认的垃圾回收器是-XX:+UseParallelGC(年轻代)和-XX:+UseParallelOldGC(老年代),如果内存较大(超过4个G,只是经验 值),系统对停顿时间比较敏感,我们可以使用ParNew+CMS(-XX:+UseParNewGC -XX:+UseConcMarkSweepGC)
对于老年代CMS的参数如何设置我们可以思考下,首先我们想下当前这个系统有哪些对象可能会长期存活躲过5次以上 minor gc最终进入老年代。
无非就是那些Spring容器里的Bean,线程池对象,一些初始化缓存数据对象等,这些加起来充其量也就几十MB。 还有就是某次minor gc完了之后还有超过一两百M的对象存活,那么就会直接进入老年代,比如突然某一秒瞬间要处理 五六百单,那么每秒生成的对象可能有一百多M,再加上整个系统可能压力剧增,一个订单要好几秒才能处理完,下一秒 可能又有很多订单过来。
我们可以估算下大概每隔五六分钟出现一次这样的情况,那么大概半小时到一小时之间就可能因为老年代满了触发一次 Full GC,Full GC的触发条件还有我们之前说过的老年代空间分配担保机制,历次的minor gc挪动到老年代的对象大小肯定是非常小的,所以几乎不会在minor gc触发之前由于老年代空间分配担保失败而产生full gc,其实在半小时后发生 full gc,这时候已经过了抢购的最高峰期,后续可能几小时才做一次FullGC。 对于碎片整理,因为都是1小时或几小时才做一次FullGC,是可以每做完一次就开始碎片整理,或者两到三次之后再做一 次也行。
综上,只要年轻代参数设置合理,老年代CMS的参数设置基本都可以用默认值,如下所示:
‐Xms3072M ‐Xmx3072M ‐Xmn2048M ‐Xss1M ‐XX:MetaspaceSize=256M ‐XX:MaxMetaspaceSize=256M
‐XX:SurvivorRatio=8 ‐XX:MaxTenuringThreshold=5 ‐XX:PretenureSizeThreshold=1M
‐XX:+UseParNewGC ‐XX:+UseConcMarkSweepGC ‐XX:CMSInitiatingOccupancyFraction=92
‐XX:+UseCMSCompactAtFullCollection ‐XX:CMSFullGCsBeforeCompaction=0
在并发标记的过程中,因为标记期间应用线程还在继续跑,对象间的引用可能发生变化,多标和漏标的情况就有可能发生。 这里我们引入“三色标记”来给大家解释下,把Gcroots可达性分析遍历对象过程中遇到的对象, 按照“是否访问过”这个条件标记成以下三种颜色:

public class ThreeColorRemark {
public static void main(String[] args) {
A a = new A();
//开始做并发标记
D d = a.b.d;// 1.读
a.b.d = null; // 2.写
a.d = d; // 3.写
}
}
class A {
B b = new B();
D d = null;
}
class B {
C c = new C();
D d = new D();
}
class C {
}
class D {
}
在并发标记过程中,如果由于方法运行结束导致部分局部变量(gcroot)被销毁,这个gcroot引用的对象之前又被扫描过 (被标记为非垃圾对象),那么本轮GC不会回收这部分内存。这部分本应该回收但是没有回收到的内存,被称之为“浮动 垃圾”。浮动垃圾并不会影响垃圾回收的正确性,只是需要等到下一轮垃圾回收中才被清除。 另外,针对并发标记(还有并发清理)开始后产生的新对象,通常的做法是直接全部当成黑色,本轮不会进行清除。这部分 对象期间可能也会变为垃圾,这也算是浮动垃圾的一部分。
漏标会导致被引用的对象被当成垃圾误删除,这是严重bug,必须解决,有两种解决方案: 增量更新(Incremental Update) 和原始快照(Snapshot At The Beginning,SATB) 。
就是当黑色对象插入新的指向白色对象的引用关系时, 就将这个新插入的引用记录下来, 等并发扫描结束之 后, 再将这些记录过的引用关系中的黑色对象为根, 重新扫描一次。 这可以简化理解为, 黑色对象一旦新插入了指向 白色对象的引用之后, 它就变回灰色对象了。
就是当灰色对象要删除指向白色对象的引用关系时, 就将这个要删除的引用记录下来, 在并发扫描结束之后, 再将这些记录过的引用关系中的灰色对象为根, 重新扫描一次,这样就能扫描到白色的对象,将白色对象直接标记为黑 色(目的就是让这种对象在本轮gc清理中能存活下来,待下一轮gc的时候重新扫描,这个对象也有可能是浮动垃圾) 以上无论是对引用关系记录的插入还是删除, 虚拟机的记录操作都是通过写屏障实现的。
给某个对象的成员变量赋值时,其底层代码大概长这样:
/**
* @param field 某对象的成员变量,如 a.b.d
* @param new_value 新值,如 null
*/
void oop_field_store(oop* field, oop new_value) {
*field = new_value; // 赋值操作
}
所谓的写屏障,其实就是指在赋值操作前后,加入一些处理(可以参考AOP的概念):
void oop_field_store(oop* field, oop new_value) {
pre_write_barrier(field); // 写屏障‐写前操作
*field = new_value;
post_write_barrier(field, value); // 写屏障‐写后操作
}
当对象B的成员变量的引用发生变化时,比如引用消失(a.b.d = null),我们可以利用写屏障,将B原来成员变量的引用 对象D记录下来:
void pre_write_barrier(oop* field) {
oop old_value = *field; // 获取旧值
remark_set.add(old_value); // 记录原来的引用对象
}
当对象A的成员变量的引用发生变化时,比如新增引用(a.d = d),我们可以利用写屏障,将A新的成员变量引用对象D 记录下来:
void post_write_barrier(oop* field, oop new_value) {
remark_set.add(new_value); // 记录新引用的对象
}
oop oop_field_load(oop* field) {
pre_load_barrier(field); // 读屏障‐读取前操作
return *field;
}
读屏障是直接针对第一步:D d = a.b.d,当读取成员变量时,一律记录下来:
void pre_load_barrier(oop* field) {
oop old_value = *field;
remark_set.add(old_value); // 记录读取到的对象
}
现代追踪式(可达性分析)的垃圾回收器几乎都借鉴了三色标记的算法思想,尽管实现的方式不尽相同:比如白色/黑色 集合一般都不会出现(但是有其他体现颜色的地方)、灰色集合可以通过栈/队列/缓存日志等方式进行实现、遍历方式可 以是广度/深度遍历等等。
对于读写屏障,以Java HotSpot VM为例,其并发标记时对漏标的处理方案如下:
工程实现中,读写屏障还有其他功能,比如写屏障可以用于记录跨代/区引用的变化,读屏障可以用于支持移动对象的并 发执行等。功能之外,还有性能的考虑,所以对于选择哪种,每款垃圾回收器都有自己的想法。
**为什么G1用SATB?CMS用增量更新? **
我的理解:SATB相对增量更新效率会高(当然SATB可能造成更多的浮动垃圾),因为不需要在重新标记阶段再次深度扫描 被删除引用对象,而CMS对增量引用的根对象会做深度扫描,G1因为很多对象都位于不同的region,CMS就一块老年代 区域,重新深度扫描对象的话G1的代价会比CMS高,所以G1选择SATB不深度扫描对象,只是简单标记,等到下一轮GC 再深度扫描。
新生代对象被老年代对象引用,通过新生代的gc root找到新生代的对象,需要把老年代的对象全部扫一遍。
这种对象不会很多。
在新生代做GCRoots可达性扫描过程中可能会碰到跨代引用的对象,这种如果又去对老年代再去扫描效率太低了。 为此,在新生代可以引入记录集(Remember Set)的数据结构(记录从非收集区到收集区的指针集合),避免把整个老年代加入GCRoots扫描范围。事实上并不只是新生代、 老年代之间才有跨代引用的问题, 所有涉及部分区域收集 (Partial GC) 行为的垃圾收集器, 典型的如G1、 ZGC和Shenandoah收集器, 都会面临相同的问题。 垃圾收集场景中,收集器只需通过记忆集判断出某一块非收集区域是否存在指向收集区域的指针即可,无需了解跨代引 用指针的全部细节。
hotspot使用一种叫做“卡表”(cardtable)的方式实现记忆集,也是目前最常用的一种方式。关于卡表与记忆集的关系, 可以类比为Java语言中HashMap与Map的关系。
卡表是使用一个字节数组实现:CARD_TABLE[ ],每个元素对应着其标识的内存区域一块特定大小的内存块,称为“卡 页”。
hotSpot使用的卡页是2^9大小,即512字节
卡表变脏上面已经说了,但是需要知道如何让卡表变脏,即发生引用字段赋值时,如何更新卡表对应的标识为1。 Hotspot使用写屏障维护卡表状态。
ABLE[ ],每个元素对应着其标识的内存区域一块特定大小的内存块,称为“卡 页”。
hotSpot使用的卡页是2^9大小,即512字节
[外链图片转存中…(img-rIdOmanz-1666263131960)]
卡表变脏上面已经说了,但是需要知道如何让卡表变脏,即发生引用字段赋值时,如何更新卡表对应的标识为1。 Hotspot使用写屏障维护卡表状态。