• 【MM32F5270开发板试用】六、如何用 星辰内核 + 国产RTOS 通过I2S播放 “星辰大海”


    本篇文章来自极术社区与灵动组织的MM32F5270开发板评测活动,更多开发板试用活动请关注极术社区网站。作者:Magicoe是攻城狮

    这个demo和想法是参考了大神的文章
    https://aijishu.com/a/1060000…

    我简单的想法是 和 星辰 这个内核呼应下,星辰大海嘛,这首歌还挺好听的,咱们的目标是星辰大海,目标要大一点 应该能实现。

    先说音频播放的接口,一般是I2S,这一点大神的文章里介绍的很详细了,我就不再赘述。我关注的目标是rt-thread上播放音乐这码事,稍微区别下。

    rt-thread提供了wav播放的包,名字叫wavplayer,我懒得移植helix的MP3
    库了,估计有很多人移植来着,我就不趟了,我的核心是IoT方向,今早收拢战线回归主要战场。
    wavplayer的下载链接,当然如果你有空用脚本生成那倒无所谓
    https://github.com/RT-Thread-…

    gitee我没找到…
    在keil的工程里添加wavplayer的源码
    这里我没有用到record录音的功能,所以这部分c文件就编译屏蔽了

    wavplayer需要用到rtt的optparse的相关定义和函数,添加optparse.c及其include的路径到工程

    接下来就是rt-thread的audio框架的相关代码了,在component文件夹下
    主要是audio.c和audio_pipe.c

    嗯,预想实现功能,rtconfig.h的修改是必不可少的,咱们需要打开如下几个宏定义,欸~

    一切就绪就是本次文章的重头了,也是我干到夜里2点没干动的代码—drv_sound.c
    我先把源文件列在这里,再讲我的思路,整的不好容易 啪啪啪 的破音,破音要么是数据DMA搬运的不连续,要么就是数据有问题,反正多搜索网上的帖子就好。
    我代码偷懒了,并没有实现audio频率的设置,音量的设置(板子不支持)等我觉得很烦的功能,懒的搞,能播就行

    /*
     * Copyright (c) 2020-2021, Bluetrum Development Team
     *
     * SPDX-License-Identifier: Apache-2.0
     *
     * Date           Author       Notes
     * 2020-12-12     greedyhao    first implementation
     */
    
    #include 
    #include "rtdevice.h"
    
    #define DBG_TAG              "drv.snd_dev"
    #define DBG_LVL              DBG_ERROR
    #include 
    
    #include 
    #include 
    #include "hal_common.h"
    #include "hal_rcc.h"
    #include "hal_i2s.h"
    #include "hal_dma.h"
    #include "hal_dma_request.h"
    #include "hal_gpio.h"
    
    #include "clock_init.h"
    
    #define SAI_AUDIO_FREQUENCY_48K         ((uint32_t)48000u)
    #define SAI_AUDIO_FREQUENCY_44K         ((uint32_t)44100u)
    #define SAI_AUDIO_FREQUENCY_38K         ((uint32_t)38000u)
    #define TX_FIFO_SIZE                    (4096*2)
    
    struct sound_device
    {
        struct rt_audio_device audio;
        struct rt_audio_configure replay_config;
        rt_uint8_t *tx_fifo;
        rt_uint8_t  volume;
    };
    
    static struct sound_device snd_dev = {0};
    
    #pragma pack (4)
    volatile uint8_t g_PlayIndex = 0;
    uint8_t g_AudioBuf[TX_FIFO_SIZE] __attribute__((section(".ARM.__at_0x20000000"))) ;
    #pragma pack()
    
    
    /* I2S IRQ. */
    void DMA1_CH5_IRQHandler(void)
    {
        rt_interrupt_enter();
        
        if (0u != (DMA_GetChannelInterruptStatus(DMA1, DMA_REQ_DMA1_SPI2_TX) & DMA_CHN_INT_XFER_DONE) )
        {
            DMA_ClearChannelInterruptStatus(DMA1, DMA_REQ_DMA1_SPI2_TX, DMA_CHN_INT_XFER_DONE);
            DMA_EnableChannel(DMA1, DMA_REQ_DMA1_SPI2_TX, true);
            
            g_PlayIndex = 1;
            rt_audio_tx_complete(&snd_dev.audio); 
        }
        
        if(0u != (DMA_CHN_INT_XFER_HALF_DONE & DMA_GetChannelInterruptStatus(DMA1, DMA_REQ_DMA1_SPI2_TX)) )
        {
            DMA_ClearChannelInterruptStatus(DMA1, DMA_REQ_DMA1_SPI2_TX, DMA_CHN_INT_XFER_HALF_DONE);
            g_PlayIndex = 0;
            rt_audio_tx_complete(&snd_dev.audio);
        }
        
        rt_interrupt_leave();
    }
    
    //apll = 采样率*ADPLL_DIV*512
    //audio pll init
    void adpll_init(uint8_t out_spr)
    {
        GPIO_Init_Type gpio_init;
        
        /* SPI2. */
        RCC_EnableAPB1Periphs(RCC_APB1_PERIPH_SPI2, true);
        RCC_ResetAPB1Periphs(RCC_APB1_PERIPH_SPI2);
        
        /* PD3 - I2S_CK. */
        gpio_init.Pins  = GPIO_PIN_3;
        gpio_init.PinMode  = GPIO_PinMode_AF_PushPull;
        gpio_init.Speed = GPIO_Speed_10MHz;
        GPIO_Init(GPIOD, &gpio_init);
        GPIO_PinAFConf(GPIOD, gpio_init.Pins, GPIO_AF_5);
    
        /* PE6 - I2S_SD. */
        gpio_init.Pins  = GPIO_PIN_6;
        gpio_init.PinMode  = GPIO_PinMode_AF_PushPull;
        gpio_init.Speed = GPIO_Speed_10MHz;
        GPIO_Init(GPIOE, &gpio_init);
        GPIO_PinAFConf(GPIOE, gpio_init.Pins, GPIO_AF_5);
    
        /* PE4 - I2S_WS. */
        gpio_init.Pins  = GPIO_PIN_4;
        gpio_init.PinMode  = GPIO_PinMode_AF_PushPull;
        gpio_init.Speed = GPIO_Speed_10MHz;
        GPIO_Init(GPIOE, &gpio_init);
        GPIO_PinAFConf(GPIOE, gpio_init.Pins, GPIO_AF_5);
    
        /* PE5 - I2S_MCK. */
        gpio_init.Pins  = GPIO_PIN_5;
        gpio_init.PinMode  = GPIO_PinMode_AF_PushPull;
        gpio_init.Speed = GPIO_Speed_10MHz;
        GPIO_Init(GPIOE, &gpio_init);
        GPIO_PinAFConf(GPIOE, gpio_init.Pins, GPIO_AF_5);
        
        
        /* Setup the DMA for I2S RX. */
        DMA_Channel_Init_Type dma_channel_init;
    
        dma_channel_init.MemAddr           = (uint32_t)(g_AudioBuf);
        dma_channel_init.MemAddrIncMode    = DMA_AddrIncMode_IncAfterXfer;
        dma_channel_init.PeriphAddr        = I2S_GetTxDataRegAddr(SPI2);  /* use tx data register here. */
        dma_channel_init.PeriphAddrIncMode = DMA_AddrIncMode_StayAfterXfer;
        dma_channel_init.Priority          = DMA_Priority_Highest;
        dma_channel_init.XferCount         = TX_FIFO_SIZE/2;
        dma_channel_init.XferMode          = DMA_XferMode_MemoryToPeriph;
        dma_channel_init.ReloadMode        = DMA_ReloadMode_AutoReload;
        dma_channel_init.XferWidth         = DMA_XferWidth_16b;
        DMA_InitChannel(DMA1, DMA_REQ_DMA1_SPI2_TX, &dma_channel_init);
    
        /* Enable DMA transfer done interrupt. */
        DMA_EnableChannelInterrupts(DMA1, DMA_REQ_DMA1_SPI2_TX, DMA_CHN_INT_XFER_DONE, true);
        DMA_EnableChannelInterrupts(DMA1, DMA_REQ_DMA1_SPI2_TX, DMA_CHN_INT_XFER_HALF_DONE, true);
        NVIC_EnableIRQ(DMA1_CH5_IRQn);
    
        /* Setup the I2S. */
        I2S_Master_Init_Type i2s_master_init;
    
        i2s_master_init.ClockFreqHz  = CLOCK_APB1_FREQ;
        i2s_master_init.SampleRate   = SAI_AUDIO_FREQUENCY_44K;
        i2s_master_init.DataWidth    = I2S_DataWidth_16b;
        i2s_master_init.Protocol     = I2S_Protocol_PHILIPS;
        i2s_master_init.EnableMCLK   = true;
        i2s_master_init.Polarity     = I2S_Polarity_1;
        i2s_master_init.XferMode     = I2S_XferMode_TxOnly;
    
        I2S_InitMaster(SPI2, &i2s_master_init);
        I2S_EnableDMA(SPI2, true);
        I2S_Enable(SPI2, true);
    
        DMA_EnableChannel(DMA1, DMA_REQ_DMA1_SPI2_TX, true);
    }
    
    
    static rt_err_t sound_getcaps(struct rt_audio_device *audio, struct rt_audio_caps *caps)
    {
        rt_err_t result = RT_EOK;
        struct sound_device *snd_dev = RT_NULL;
    
        RT_ASSERT(audio != RT_NULL);
        snd_dev = (struct sound_device *)audio->parent.user_data;
    
        LOG_D("%s:main_type: %d, sub_type: %d", __FUNCTION__, caps->main_type, caps->sub_type);
        
        switch (caps->main_type)
        {
        case AUDIO_TYPE_QUERY: /* qurey the types of hw_codec device */
        {
            switch (caps->sub_type)
            {
            case AUDIO_TYPE_QUERY:
                caps->udata.mask = AUDIO_TYPE_OUTPUT | AUDIO_TYPE_MIXER;
                break;
    
            default:
                result = -RT_ERROR;
                break;
            }
    
            break;
        }
    
        case AUDIO_TYPE_OUTPUT: /* Provide capabilities of OUTPUT unit */
        {
            switch (caps->sub_type)
            {
            case AUDIO_DSP_PARAM:
                caps->udata.config.samplerate   = snd_dev->replay_config.samplerate;
                caps->udata.config.channels     = snd_dev->replay_config.channels;
                caps->udata.config.samplebits   = snd_dev->replay_config.samplebits;
                break;
    
            case AUDIO_DSP_SAMPLERATE:
                caps->udata.config.samplerate   = snd_dev->replay_config.samplerate;
                break;
    
            case AUDIO_DSP_CHANNELS:
                caps->udata.config.channels     = snd_dev->replay_config.channels;
                break;
    
            case AUDIO_DSP_SAMPLEBITS:
                caps->udata.config.samplebits   = snd_dev->replay_config.samplebits;
                break;
    
            default:
                result = -RT_ERROR;
                break;
            }
    
            break;
        }
    
        case AUDIO_TYPE_MIXER: /* report the Mixer Units */
        {
            switch (caps->sub_type)
            {
            case AUDIO_MIXER_QUERY:
                caps->udata.mask = AUDIO_MIXER_VOLUME;
                break;
    
            case AUDIO_MIXER_VOLUME:
              //  caps->udata.value =  saia_volume_get();
                break;
    
            default:
                result = -RT_ERROR;
                break;
            }
    
            break;
        }
    
        default:
            result = -RT_ERROR;
            break;
        }
    
        return RT_EOK;
    }
    
    static rt_err_t sound_configure(struct rt_audio_device *audio, struct rt_audio_caps *caps)
    {
        rt_err_t result = RT_EOK;
        struct sound_device *snd_dev = RT_NULL;
    
        RT_ASSERT(audio != RT_NULL);
        snd_dev = (struct sound_device *)audio->parent.user_data;
    
        switch (caps->main_type)
        {
        case AUDIO_TYPE_MIXER:
        {
            switch (caps->sub_type)
            {
            case AUDIO_MIXER_VOLUME:
            {
                rt_uint8_t volume = caps->udata.value;
    
             //   saia_volume_set(volume);
                snd_dev->volume = volume;
                LOG_D("set volume %d", volume);
                break;
            }
    
            case AUDIO_MIXER_EXTEND:
    
            break;
    
            default:
                result = -RT_ERROR;
                break;
            }
    
            break;
        }
    
        case AUDIO_TYPE_OUTPUT:
        {
            switch (caps->sub_type)
            {
            case AUDIO_DSP_PARAM:
            {
                /* set samplerate */
              //  saia_frequency_set(caps->udata.config.samplerate);
                /* set channels */
              //  saia_channels_set(caps->udata.config.channels);
    
                /* save configs */
                snd_dev->replay_config.samplerate = caps->udata.config.samplerate;
                snd_dev->replay_config.channels   = caps->udata.config.channels;
                snd_dev->replay_config.samplebits = caps->udata.config.samplebits;
                LOG_D("set samplerate %d", snd_dev->replay_config.samplerate);
                break;
            }
    
            case AUDIO_DSP_SAMPLERATE:
            {
             //   saia_frequency_set(caps->udata.config.samplerate);
                snd_dev->replay_config.samplerate = caps->udata.config.samplerate;
                LOG_D("set samplerate %d", snd_dev->replay_config.samplerate);
                break;
            }
    
            case AUDIO_DSP_CHANNELS:
            {
              //  saia_channels_set(caps->udata.config.channels);
                snd_dev->replay_config.channels   = caps->udata.config.channels;
                LOG_D("set channels %d", snd_dev->replay_config.channels);
                break;
            }
    
            case AUDIO_DSP_SAMPLEBITS:
            {
                /* not support */
                snd_dev->replay_config.samplebits = caps->udata.config.samplebits;
                break;
            }
    
            default:
                result = -RT_ERROR;
                break;
            }
    
            break;
        }
    
        default:
            break;
        }
    
        return RT_EOK;
    }
    
    static rt_err_t sound_init(struct rt_audio_device *audio)
    {
        struct sound_device *snd_dev = RT_NULL;
    
        RT_ASSERT(audio != RT_NULL);
        snd_dev = (struct sound_device *)audio->parent.user_data;
    
        adpll_init(0);
    
        /* set default params */
       // saia_frequency_set(snd_dev->replay_config.samplerate);
        //saia_channels_set(snd_dev->replay_config.channels);
        //saia_volume_set(snd_dev->volume);
    
        return RT_EOK;
    }
    
    static rt_err_t sound_start(struct rt_audio_device *audio, int stream)
    {
        struct sound_device *snd_dev = RT_NULL;
    
        RT_ASSERT(audio != RT_NULL);
        snd_dev = (struct sound_device *)audio->parent.user_data;
    
        if (stream == AUDIO_STREAM_REPLAY)
        {
            LOG_D("open sound device");
            DMA_EnableChannel(DMA1, DMA_REQ_DMA1_SPI2_TX, true);
    
        }
    
        return RT_EOK;
    }
    
    static rt_err_t sound_stop(struct rt_audio_device *audio, int stream)
    {
        RT_ASSERT(audio != RT_NULL);
    
        if (stream == AUDIO_STREAM_REPLAY)
        {
            LOG_D("close sound device");
            DMA_EnableChannel(DMA1, DMA_REQ_DMA1_SPI2_TX, false);
        }
    
        return RT_EOK;
    }
    
    rt_size_t sound_transmit(struct rt_audio_device *audio, const void *writeBuf, void *readBuf, rt_size_t size)
    {
        struct sound_device *snd_dev = RT_NULL;
        rt_size_t count = 0;
    
    //    RT_ASSERT(audio != RT_NULL);
    //    snd_dev = (struct sound_device *)audio->parent.user_data;
    //    rt_kprintf("Size %d   %d\r\n", size, g_PlayIndex);
        if(g_PlayIndex == 0)
        {
            memcpy(&g_AudioBuf[0], writeBuf, size);
        }
        else
        {
            memcpy(&g_AudioBuf[TX_FIFO_SIZE/2], writeBuf, size);
        }
        
        return size;
    }
    
    static void sound_buffer_info(struct rt_audio_device *audio, struct rt_audio_buf_info *info)
    {
        struct sound_device *snd_dev = RT_NULL;
    
        RT_ASSERT(audio != RT_NULL);
        snd_dev = (struct sound_device *)audio->parent.user_data;
    
        /**
         *               TX_FIFO
         * +----------------+----------------+
         * |     block1     |     block2     |
         * +----------------+----------------+
         *  \  block_size  /
         */
        info->buffer      = snd_dev->tx_fifo;
        info->total_size  = TX_FIFO_SIZE;
        info->block_size  = TX_FIFO_SIZE/2;
        info->block_count = 2;
    }
    
    static struct rt_audio_ops ops =
    {
        .getcaps     = sound_getcaps,
        .configure   = sound_configure,
        .init        = sound_init,
        .start       = sound_start,
        .stop        = sound_stop,
        .transmit    = sound_transmit,//NULL,//sound_transmit,
        .buffer_info = sound_buffer_info,
    };
    
    static int rt_hw_sound_init(void)
    {
        rt_uint8_t *tx_fifo = RT_NULL;
        rt_uint8_t *rx_fifo = RT_NULL;
    
        tx_fifo = rt_malloc(TX_FIFO_SIZE);
        if(tx_fifo == RT_NULL)
        {
            rt_kprintf("Sound can alloc tx_fifo\r\n");
            return -RT_ENOMEM;
        }
        
        rt_memset(&g_AudioBuf[0], 0x00, TX_FIFO_SIZE);
        
        rt_memset(tx_fifo, 0, TX_FIFO_SIZE/2);
        snd_dev.tx_fifo = tx_fifo;
    
        /* init default configuration */
        {
            snd_dev.replay_config.samplerate = SAI_AUDIO_FREQUENCY_44K;
            snd_dev.replay_config.channels   = 2;
            snd_dev.replay_config.samplebits = 16;
            snd_dev.volume                   = 55;
        }
    
        /* register snd_dev device */
        snd_dev.audio.ops = &ops;
        rt_audio_register(&snd_dev.audio, "sound0", RT_DEVICE_FLAG_WRONLY, &snd_dev);
        return RT_EOK;
    }
    INIT_DEVICE_EXPORT(rt_hw_sound_init);
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338
    • 339
    • 340
    • 341
    • 342
    • 343
    • 344
    • 345
    • 346
    • 347
    • 348
    • 349
    • 350
    • 351
    • 352
    • 353
    • 354
    • 355
    • 356
    • 357
    • 358
    • 359
    • 360
    • 361
    • 362
    • 363
    • 364
    • 365
    • 366
    • 367
    • 368
    • 369
    • 370
    • 371
    • 372
    • 373
    • 374
    • 375
    • 376
    • 377
    • 378
    • 379
    • 380
    • 381
    • 382
    • 383
    • 384
    • 385
    • 386
    • 387
    • 388
    • 389
    • 390
    • 391
    • 392
    • 393
    • 394
    • 395
    • 396
    • 397
    • 398
    • 399
    • 400
    • 401
    • 402
    • 403
    • 404
    • 405
    • 406
    • 407
    • 408
    • 409
    • 410
    • 411
    • 412
    • 413
    • 414
    • 415
    • 416
    • 417
    • 418
    • 419
    • 420
    • 421
    • 422
    • 423
    • 424
    • 425
    • 426
    • 427
    • 428
    • 429
    • 430
    • 431
    • 432
    • 433
    • 434
    • 435
    • 436
    • 437
    • 438
    • 439
    • 440
    • 441
    • 442
    • 443
    • 444
    • 445
    • 446
    • 447
    • 448
    • 449
    • 450
    • 451
    • 452
    • 453
    • 454
    • 455
    • 456
    • 457

    DMA搬运wav的音频数据我遇到了很多问题,最后用一个大的buffer给DMA搬运,把这个buffer拆成两半,DMA使用half transfer interrupt以及transfered interrupt即传输一半给中断,传输完成给中断。
    传输一半的时候让wav解码任务读取一部分内容放到buffer前半部分,传输完成通知wav解码任务再读取一部分内容放到buffer的后半部分。类似pingpong buffer 这种机制,才能保证wav播放的连续性。

    好吧编译后下载运行看视频的结果,wav播放的命令是wavplayer -s 文件名

  • 相关阅读:
    算法系列四:十大经典排序算法之——冒泡排序
    数据结构与算法编程题5
    数据库概论 - MySQL的简单介绍
    抓到Dubbo异步调用的小BUG,再送你一个贡献开源代码的机会
    【玩转Springcloud Alibaba系列】使用Nacos 实现服务注册与负载均衡
    HDFS的读写流程——宏观与微观
    XAF中XPO与EFCore的探讨
    生信教程:多序列比对
    【Python 实战基础】如何修改表格数据类型DataFrame列的顺序
    2.0、C语言数据结构——时间复杂度和空间复杂度 (1)
  • 原文地址:https://blog.csdn.net/weixin_47569031/article/details/127426943